WILD REINDEER

MAIN RESEARCH FINDINGS

FROM OUR WORK ON SPACE USE AND HUMAN/REINDEER COEXISTENCE

Manuela Panzacchi

3 Oct 2016, Trondheim

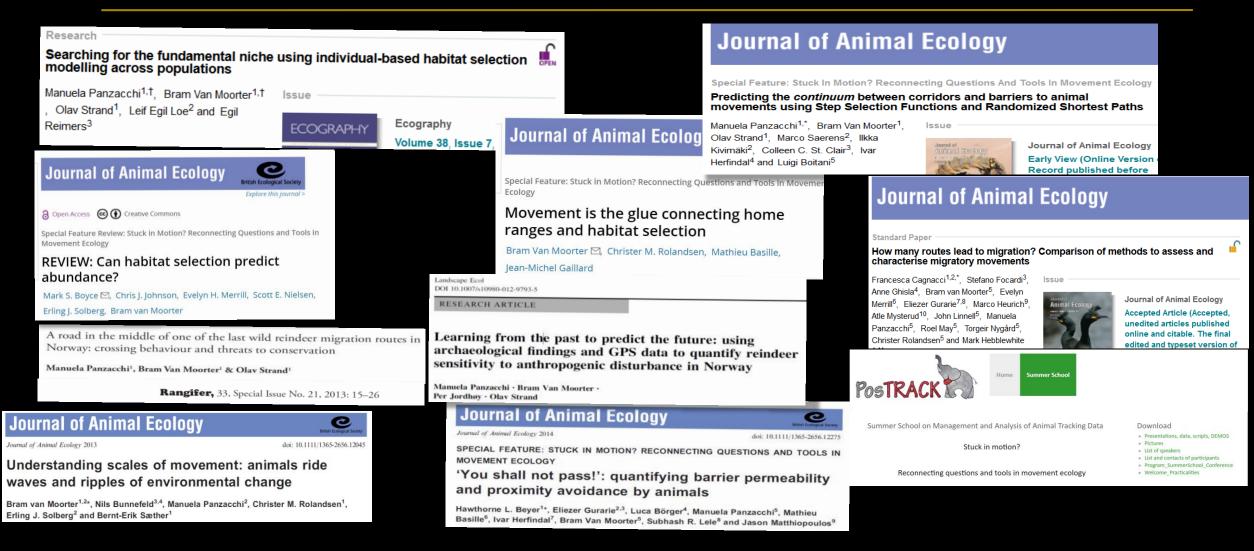
Kickoff meeting, NINA-Guelph collaboration

HOW DO WE WORK:

Understand *MECHANISMS* of reindeer-human coexistence

(data modelling – largely based on reindeer GPS data)

PREDICT reindeer behaviour in a scenario approach


Develop tools to aid sustainable LAND-PLANNING, MITIGATIONS, OFF-SET....

DATA MANAGEMENT TOOL: SAM – SPATIAL DATABASE FOR ANIMAL MOVEMENTS

Climate, Habitat, infrastructures.. > 250 reindeer GPS data Open source, free PostgreSQL 60 Environmental data SAM tool 8 Roads ranoleisocianol Cabins DataBase Manager SAM too Areas Multi-dimensional tracking object Land cover Remote sensing DEM X Statistics emperature Home range Enriched tracking data Trajectory ODIS-NOVI Analysis results Internet Software clients R GDAL ArcGIS pgAdmin II Data y and manag SQL Interface Raster data manageme & & SAM DB Cagnacci & Urbano 2015 NINA WIKI

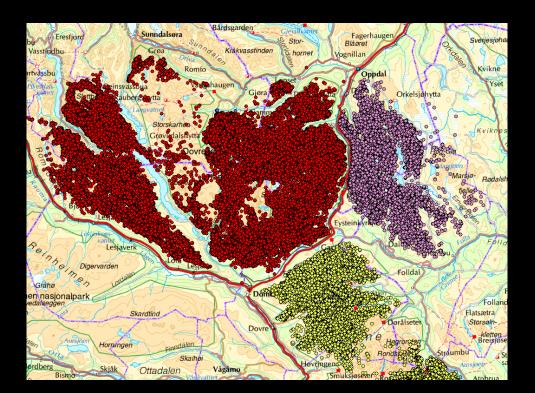
Output pane																	
5	Data O	a Output Explain Messages History															
		animals integer		isition_tin stamp wit			longitude double precision					reindeer_areas_id integer	sun_angle double precision		temperature_nve double precision	closest_cabin integer	lc_norut integer
	1	43	2008	-01-01 0	0:00:5	50	8.114352	60.19383	01010000	450891	6673327	3	-52.5105	1187	2547	854	14
	2	43	2008	-01-01 0	03:00:4	44	8.116049	60.195748	01010000	450988	6673540	3	-38.2023	1216	2546	821	14
	3	43	2008	-01-01 0	06:00:4	43	8.123135	60.196081	01010000	451381	6673571	3	-16.3138	1244	2546	1180	17
	4	43	2008	-01-01 0	9:00:4	41	8.12218	60.195436	01010000	451327	6673500	3	1.66246	1223	2546	1150	14
	5	43	2008	-01-01 1	12:00:4	44	8.126824	60.198916	01010000	451590	6673884	3	6.61718	1243	2546	1347	14
	6	43	2008	-01-01 1	15:00:4	41	8.129531	60.201478	01010000	451744	6674168	3	-3.60621	1234	2546	1417	14
	7	42	2009	-01-01 1	0.00.2	25	0 142045	60 20729	01010000	452501	6674005	2	-22 0702	1162	2546	420	17

WHAT HAVE WE LEARNED?

VERY short, very simplified version: wild reindeer tend to avoid all sources of human disturbance

However, the devil is in the details!! Their response depend on...

1. TYPE OF DISTURBANCE



EFFECT OF ROADS

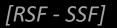
Roads shape reindeer distribution

- \Rightarrow Strongly avoided in all seasons and areas, up to:
 - 10-15 km *public* roads
 - 1 km (winter), 5 km (summer) *private* roads
- \Rightarrow Reduce landscape permeability of 44-100%
- \Rightarrow Hamper migration

 \Rightarrow ...

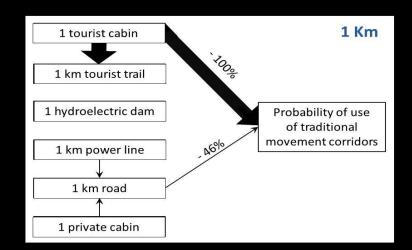
Variables	coef	se(coef)	Z	Pr(> z)
poly(pca1, 2)1	341.955	20.507	16.675	< 0.001
poly(pca1, 2)2	-297.059	16.850	-17.630	< 0.001
poly(pca2, 2)1	-889.623	39.347	-22.609	< 0.001
poly(pca2, 2)2	-494.932	24.107	-20.531	< 0.001
poly(pca3, 2)1	-126.648	14.798	-8.558	< 0.001
poly(pca3, 2)2	-118.996	14.257	-8.347	< 0.001
poly(pca4, 2)1	4.090	11.998	0.341	0.733
poly(pca4, 2)2	24.017	9.647	2.490	0.013
CabinsPublic_10K	-0.157	0.023	-6.843	< 0.001
PowerLines_res15K	-0.305	0.025	-11.990	< 0.001
CabinsPrivate_15K	-0.226	0.035	-6.456	< 0.001
RoadsPrivate_res1K	-0.781	0.074	-10.544	< 0.001
RoadsPublic_15K	-0.684	0.058	-11.726	< 0.001
SkiTrails_res3K	0.089	0.017	5.420	< 0.001
NORUT_Mountain12	1.500	0.165	9.081	< 0.001
NORUT_Mountain13	3.057	0.155	19.745	< 0.001
NORUT_Mountain14	2.637	0.150	17.543	< 0.001
NORUT_Mountain15	2.871	0.169	17.026	< 0.001
NORUT_Mountain16	2.674	0.151	17.677	< 0.001
NORUT_Mountain17	2.483	0.146	16.981	< 0.001
NORUT_Mountain18	1.986	0.167	11.909	< 0.001
NORUT_Mountain19	2.501	0.155	16.106	< 0.001
NORUT_Mountain20	1.813	0.156	11.588	< 0.001
NORUT_Bog	1.184	0.199	5.934	< 0.001
NORUT_Water	1.114	0.181	6.169	< 0.001
NORUT_Other	-11.727	1.E+03	-0.011	< 0.001

[RSF - SSF]


[Movement Kernel] [Net displacement]

Panzacchi-Van Moorter et al. Ecography, 2015 Panzacchi et al, J anim Ecol 2015 Panzacchi et al Rangifer 2013 Beyer et al J anim Ecol. 2016 Beyer et al J anim Ecol. 2015

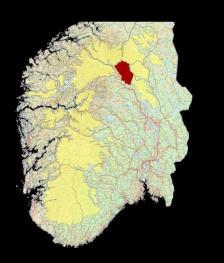
EFFECT OF TOURIST CABINS, HICKING TRAILS


CABINS (299 DNT + 42.925 private cabins)

- \Rightarrow Avoided in all areas (high d), especially in summer
- \Rightarrow Large tourist cabins (DNT) built along traditional migration corridors can stop migrations:

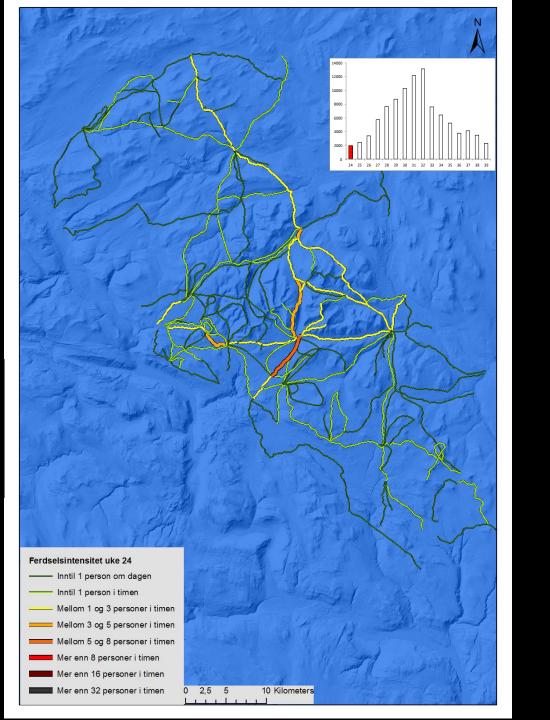
[Path Analysis]

HIKING TRAILS (7.850 km)

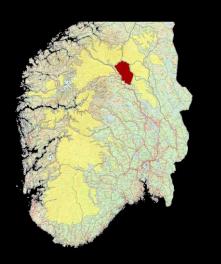

 \Rightarrow Negative, significant, but highly variable effects

[RSF, SSF, Path Analysis]

Panzacchi-Van Moorter et al. Ecography, 2015 Panzacchi et al, J anim Ecol 2015 Panzacchi et al, Land. Ecol, 2013

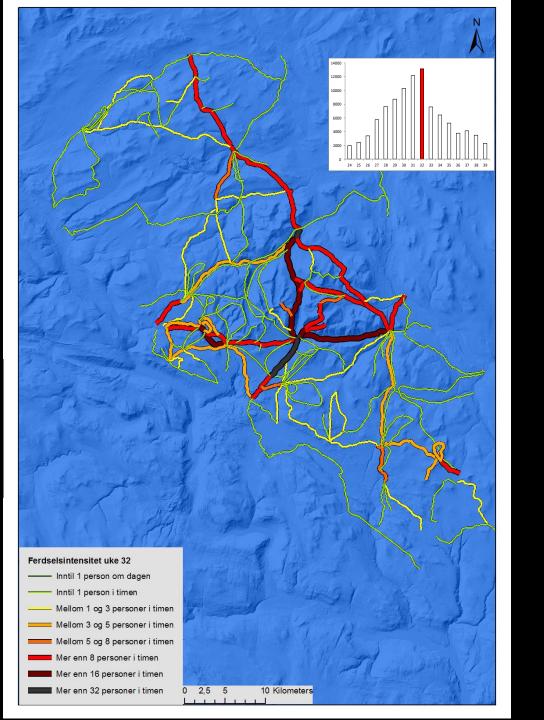


2. INTENSITY OF DISTURBANCE

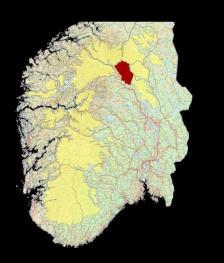


N PEOPLE WALKING ON TRAILS

RONDANE, SUMMER

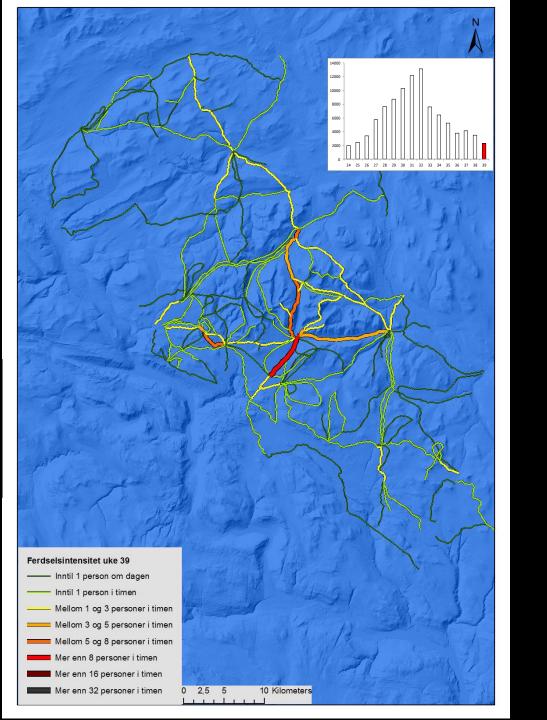


V. Gundersen

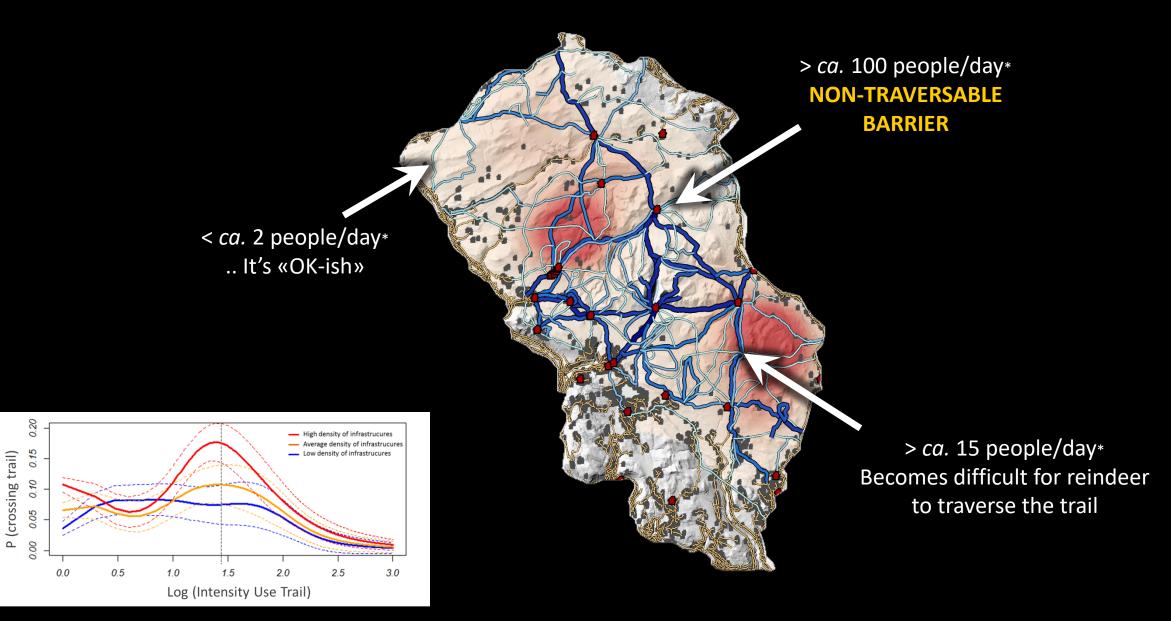


N PEOPLE WALKING ON TRAILS

RONDANE, SUMMER



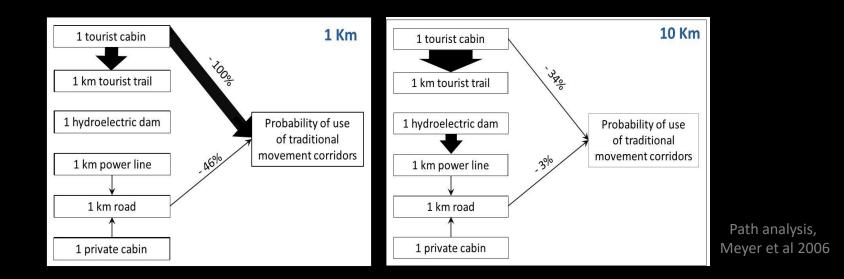
V. Gundersen


N PEOPLE WALKING ON TRAILS

RONDANE, SUMMER

V. Gundersen

EFFECT OF TOURIST VOLUME ON REINDEER SPACE USE


* Numbers refer to Trail Use Index, which roughly represents twice the number of people walking along a trail

CUMULATIVE EFFECTS

Effect of spatial correlation among infrastructures

DIRECT, INDIRECT, CUMULATIVE EFFECTS

DIRECT EFFECTS: - road: -46% (e.g. 1 km) - DNT cabin: -100%

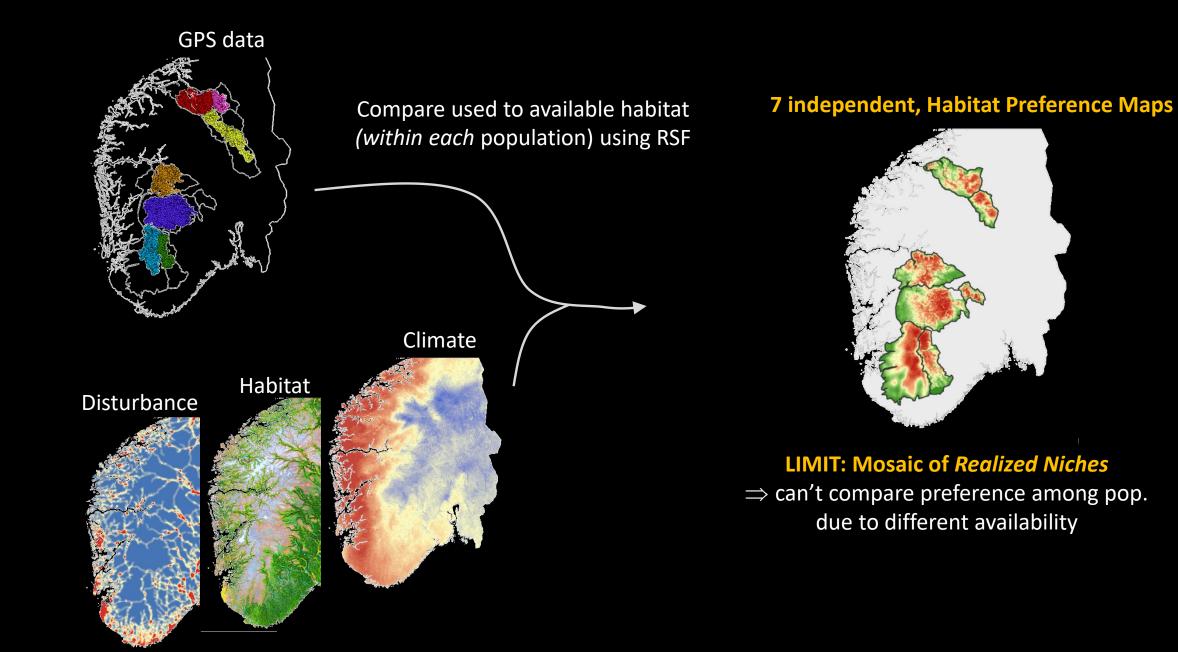
CUMULATIVE (ADDITIVE) EFF. e.g: - 1 km road: -3%

(e.g. 10 km)

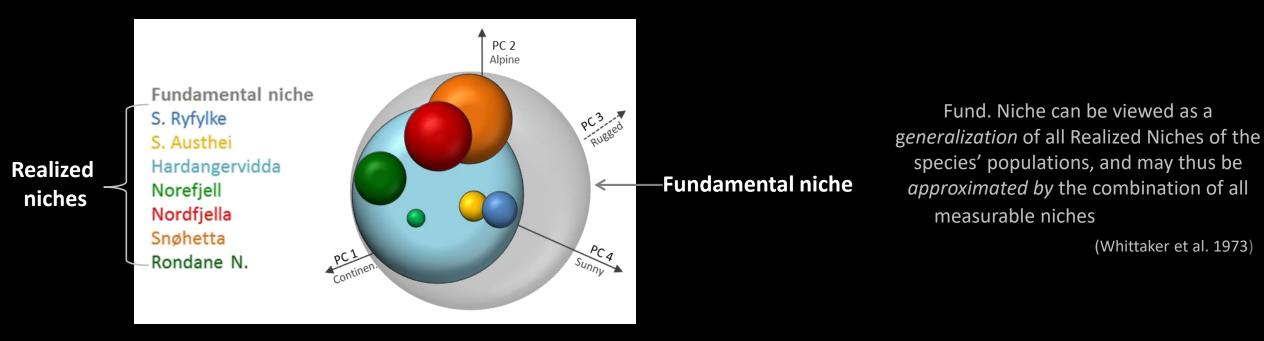
- 10 km road: - 25%

- 10 km road + DNT cabin : - 51%

NDIRECT EFFECTS: - power line

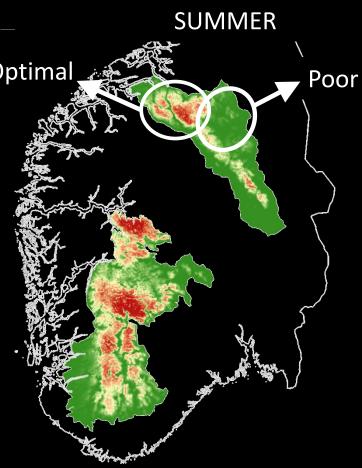

- private cabin
- Reservoir

(HOW TO IDENTIFY THEM?)


OPTIMAL VS. SUBOPTIMAL HABITATS

TRADITIONAL HABITAT SELECTION APPROACH

SCALING UP HAB MODELLING ACROSS POP TO APPROXIMATE THE FUNDAMENTAL NICHE


- CLR with log-link function. Used points conditioned to available points within available area
- Relevant variables modeled using a Gaussian curve to estimate NICHE OPTIMUM (curve mean) and NICE BREADTH (variance)

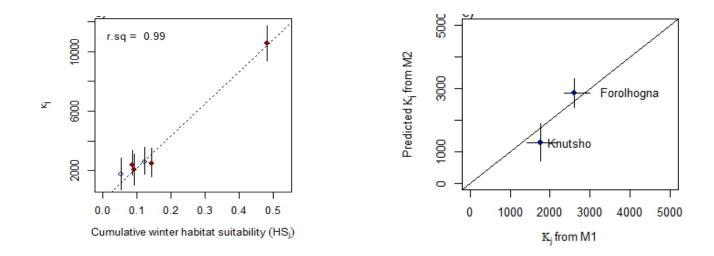
Use Available ~
$$\alpha + \beta_0 \begin{bmatrix} \text{Human disturbance}_i \\ (different scales) \end{bmatrix} + \beta_1 \begin{bmatrix} \text{Environmental} \\ variable_i \end{bmatrix} + \beta_2 \begin{bmatrix} \text{Environmental} \\ variable_i \end{bmatrix}^2 + ... + \mathcal{E}$$

Niche = $\beta_1 \sigma^2$
Optimum $\beta_1 \sigma^2$
Niche = $-1/(2\beta_2)$

APPROXIMATION OF THE FUNDAMENTAL NICHE OF WILD REINDEER IN NORWAY

"Optimal habitat", i.e. hab. reindeer would choose if they could move freely (no barriers)
=> Allows to identify *gradients in habitat quality across the distribution range*

WINTER Optimal 🔬 Optimal Poor



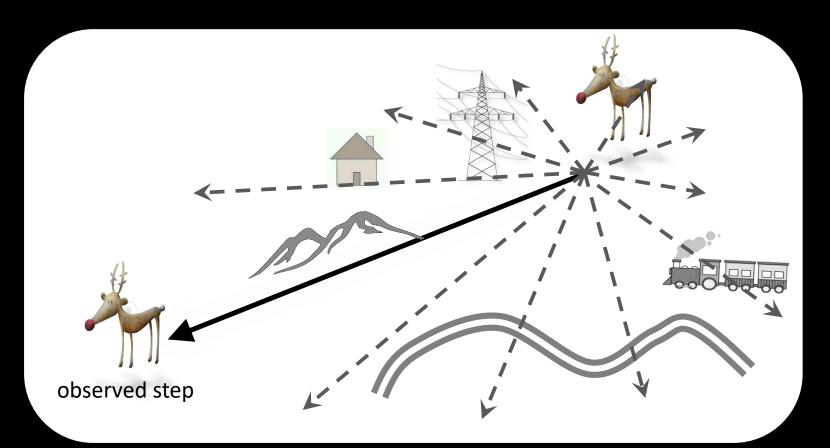
OPTIMAL SUB-OPTIMAL

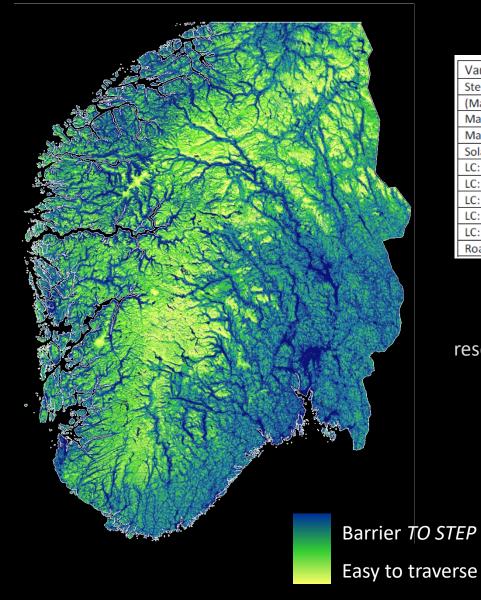
DOES THE «APPROXIMATION OF FUNDAMENTAL NICHE» REFLECT FITNESS? IT SEEMS SO! (Nilsen et al. *in prep*):

- 1) Identify Population-specific Carrying Capacity κ
 - Data: Minimum Counts (aerial transects), harvest data (6 pop, 1960-)
 - Approach: Cross-population Theta-Logistic State Space models:
 - Observation model accounts for environmental stochasticity & measurement errors
 - Population dynamic model

2) Set of models explaining κ using population effects, total available area, winter/summer range, «fundamental niche models»...

winter fundamental niche is the best predictor of cross-population differences in carrying capacity (PRELIMINARY RESULTS!)


HOW TO IDENTIFY MOVEMENT CORRIDORS?

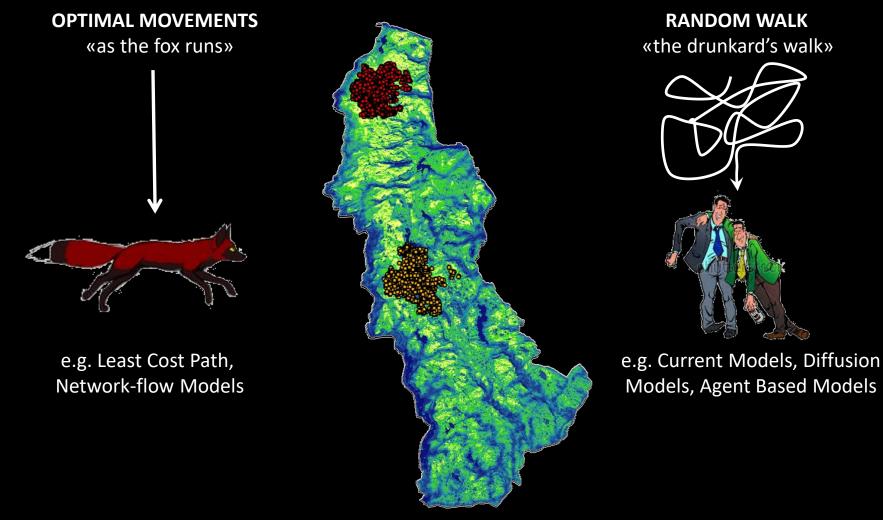

To which degree each landscape feature can be traversed by a "step"?

Step Selection Function - CLR

HOW TO IDENTIFY MOVEMENT CORRIDORS: STEP 1 – LANDSCAPE FRICTION MAP

Spring migration (April-May)

		1		
Variables	coef	se(coef)	Z	р
Step length (corrected)	-1.142e-03	1.171e-05	-97.500	***
(Max slope)^2	-1.165e-03	3.559e-05	-32.732	***
Max trail density	-1.538e-01	2.338e-02	-6.581	***
Max road density	-5.324e-01	1.006e-01	-5.295	***
Solar radiation	3.978e-01	1.051e-02	37.832	***
LC: bog	-5.510e-01	1.570e-01	-3.509	***
LC: mountain not edible veg.	1.516e-01	6.908e-02	2.195	*
LC: mountain edible veg.	5.996e-01	6.096e-02	9.835	***
LC: non dammed lakes	-1.431e+00	1.268e-01	-11.288	***
LC: dammed lakes	-3.936e+00	4.645e-01	-8.473	***
Road crossing	-3.099e-01	1.264e-01	-2.451	*

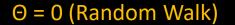

P (crossing) natural lakes (24%) >> P (crossing) reservoirs (2%): (frozen) lakes can be traversed, while reservoirs are an almost impermeable barrier

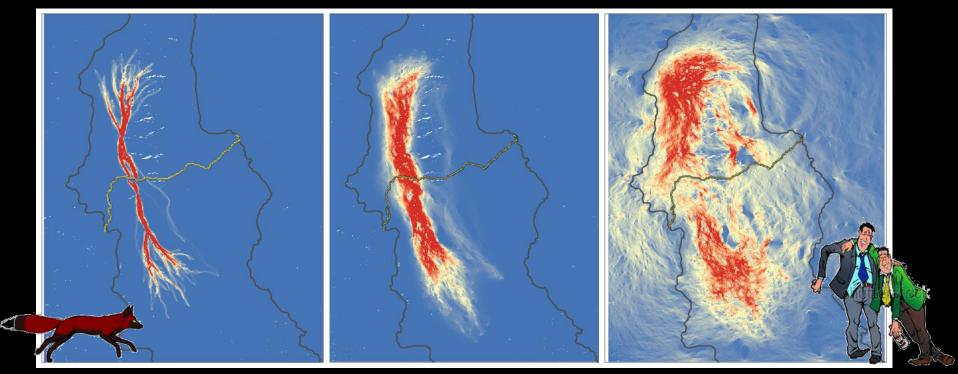
Panzacchi et al, J. Anim. Ecol. 2015

HOW TO IDENTIFY MOVEMENT CORRIDORS: STEP 2 – RANDOMIZED SHORTEST PATH

We know where migration starts and ends & how permeable is the landscape in between

... but which way do reindeer walk?


EXAMPLE: Setesdal Austhei area


HOW TO IDENTIFY MOVEMENT CORRIDORS: STEP 2 – RANDOMIZED SHORTEST PATH

RSP bridges the gap between LCP and random-walk based approaches.

It identifies paths based on a *given degree of randomness* in animal movements (controlled by the parameter Θ):

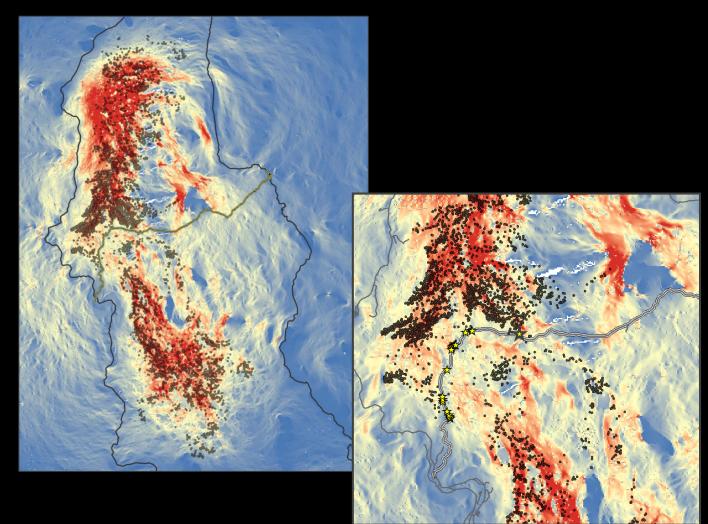
$\Theta = 20$ (Least Cost Path)

Sensitivity analysis to find Θ values that best match the observed reindeer movement pattern

Panzacchi et al, J. Anim. Ecol. 2015

STEP 3: RSP SENSITIVITY ANALYSIS & VALIDATION

During migration reindeer move neither optimally nor at random - intermediate behaviour


CORRIDOR **ROAD CROSSING POINT** Observed movement area Observed crossing point (Brownian Bridge) Best prediction Best prediction: Intermediate Θ km 9-14 Worst pred.: Worst prediction - LCP km 22 Panzacchi et al, J. Anim. Ecol. 2015

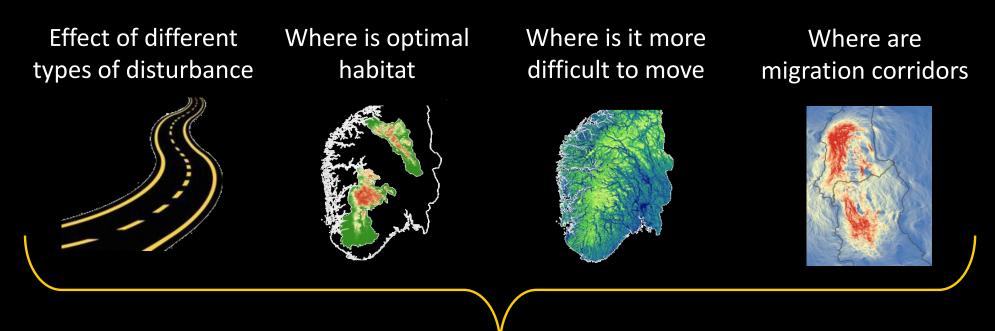
25 Km

WE CAN PREDICT THE CORRIDOR-BARRIER CONTINUUM DURING MIGRATION

Highest probability of flow: **CORRIDOR** 0 *P*(flow): **BARRIER**

• GPS locations

APPLICATIONS:


- Support sustainable land planning: forecast changes in movement routes following changes in infrastructure network
- Identify cost-efficient mitigation /defragmentation measures

Panzacchi et al, J. Anim. Ecol. 2015

HOW CAN OUR PREDICTIONS BE USEFUL?

IN CONCLUSION, WE CAN PREDICT:

WE CAN PREDICT THE EFFECT ON REINDEER OF:

- CHANGES IN THE NETWORK INFRASTRUCTURES
- CHANGES IN LAND USE, CLIMATE
- MITIGATION- OFF-SET MEASURES

 \Rightarrow WE CAN ASSIST SUSTAINABLE LAND PLANNING,

to allow reindeer and human to coexist in the future