423 OPPDRAGSMELDING

Overvåking av ombrotrof myr, Havmyran - Hitra 1995 Undersøkelser av vegetasjon, torv og myrvann

Per Arild Aarrestad Arne A. Frisvoll Odd Eilertsen

NINA Norsk institutt for naturforskning

Overvåking av ombrotrof myr, Havmyran - Hitra 1995

Undersøkelser av vegetasjon, torv og myrvann

Per Arild Aarrestad Arne A. Frisvoll Odd Eilertsen

NINA Norsk institutt for naturforskning

NINA•NIKUs publikasjoner

NINA•NIKU utgir følgende faste publikasjoner:

NINA Fagrapport NIKU Fagrapport

Her publiseres resultater av NINAs og NIKUs eget forskningsarbeid, problemoversikter, kartlegging av kunnskapsnivået innen et emne, og litteraturstudier. Rapporter utgis også som et alternativ eller et supplement til internasjonal publisering, der tidsaspekt, materialets art, målgruppe m.m. gjør dette nødvendig. Opplag: Normalt 300-500

Opplag: Normalt 300-500

NINA Oppdragsmelding NIKU Oppdragsmelding

Dette er det minimum av rapportering som NINA og NIKU gir til oppdragsgiver etter fullført forsknings- eller utredningsprosjekt. I tillegg til de emner som dekkes av fagrapportene, vil oppdragsmeldingene også omfatte befaringsrapporter, seminar- og konferanseforedrag, årsrapporter fra overvåkningsprogrammer, o.a. Opplaget er begrenset. (Normalt 50-100)

Temahefter

Disse behandler spesielle tema og utarbeides etter behov bl.a. for å informere om viktige problemstillinger i samfunnet. Målgruppen er "almenheten" eller særskilte grupper, f.eks. landbruket, fylkesmennenes miljøvernavdelinger, turist- og friluftlivskretser o.l. De gis derfor en mer populærfaglig form og med mer bruk av illustrasjoner enn ovennevnte publikasjoner.

Opplag: Varierer

Fakta-ark

Hensikten med disse er å gjøre de viktigste resultatene av NINA og NIKUs faglige virksomhet, og som er publisert andre steder, tilgjengelig for et større publikum (presse, ideelle organisasjoner, naturforvaltningen på ulike nivåer, politikere og interesserte enkeltpersoner). Opplag: 1200-1800

I tillegg publiserer NINA og NIKU-ansatte sine forskningsresultater i internasjonale vitenskapelige journaler, gjennom populærfaglige tidsskrifter og aviser. Aarrestad, P.A., Frisvoll, A. & Eilertsen, O. 1996. Overvåking av ombrotrof myr, Havmyran - Hitra 1995. Undersøkelser av vegetasjon, torv og myrvann. - NINA Oppdragsmelding 423 1-78

Trondheim, juni 1996

ISSN 0802-4103 ISBN 82-426-0706-0

Forvaltningsområde:

Rettighetshaver ©: Stiftelsen for naturforskning og kulturminneforskning NINA•NIKU

Publikasjonen kan siteres fritt med kildeangivelse

Redaksjon: Bjørn Åge Tømmerås

NINA•NIKU, Trondheim

Design og layout: Synnøve Vanvik

Sats: NINA•NIKU

Kopiering: Norservice

Opplag: 150

Kontaktadresse: NINA•NIKU Tungasletta 2 7005 Trondheim Tel: 73 58 05 00 Fax: 73 91 54 33

Tilgjengelighet: Åpen
Prosjekt nr.: 1695003 Tjeldbergodden/A3b-vegetasjon
Ansvarlig signatur: Been Aje Tourunas

Oppdragsgiver:

Statoil

Referat

Aarrestad, P.A., Frisvoll, A. & Eilertsen, O. 1996. Overvåking av ombrotrof myr, Havmyran - Hitra 1995. Undersøkelser av vegetasjon, torv og myrvann. - NINA Oppdragsmelding 423: 1-78

Et referanseområde for overvåking av ombrotrof myr ble etablert i Havmyran naturreservat, Hitra i Sør-Trøndelag i 1995. Prosjektet er satt i gang av Statoil i forbindelse med industriutbyggingen på Tjeldbergodden i Møre og Romsdal. Formålet med overvåkingen er å vise om det vil skje endringer i myrvegetasjon, torv og myrvann på grunn av utslipp til luft fra industrien. Det er lagt særlig vekt på mulige effekter av økt nitrogenavsetning.

Fem transekter er lagt ut for å dekke mest mulig av den floristiske og økologiske variasjon langs tue-hølje gradienten på ombrotrof myr. 100 permanent oppmerkede ruter (0,5 x 0,5 m) er analysert for arters frekvens og prosent dekning. Torv- og vannprøver er samlet inn i tilknytning til analyserutene. Torvprøvene er analysert for utbyttbare og ekstraherbare elementer (1M NH₄NO₃), samt totalt nitrogen. Vannprøvene er analysert for pH, ledningsevne, totalt nitrogen og NO₃⁻. Fire mosearter er analysert for totalinnhold av kationer og nitrogen.

Vegetasjons- og miljødataene ble behandlet numerisk med multivariate metoder. Klassifikasjon ble utført med TWINSPAN og med Bray-Curtis ulikhetsmål. Indirekte gradientanalyser ble utført med DCA og LNMDS, og CCA ble brukt til direkte gradientanalyser. Hver enkelt miljøparameters forklaring av artsvariasjonen ble testet med partiell CCA og "Monte Carlo permutation" tester. Kendalls τ ble brukt til korrelasjonsanalyser mellom miljøvariabler og DCA-akseverdier, og innbyrdes mellom miljøvariabler. Korrelasjoner mellom miljøvariabler ble også undersøkt ved PCA.

Den analyserte vegetasjonen er representativ for atlantisk høgmyr. Det er registret 93 arter, derav 25 karplante-, 49 mose- og 19 lavarter i de 100 analyserutene. TWINSPAN deler analyserutene inn i fire grupper: heigråmosetuer, torvmosetuer, fastmatter og mykmatter. De indirekte gradientanalysene gjenspeiler tue-høljegradienten langs første ordinasjonsakse. Variasjonen av arter langs andre akse er relatert til ulikheter i substrat og næringsforhold. Ordinasjoner med arters smårutefrekvens og prosent dekning gir omtrent samme resultat. CCA viser at vannstandsnivåets høgde i forhold til vegetasjonsoverflaten er den viktigste forklarende miljøparameteren. Deretter kommer totalt N, basemetning, pH, utbyttbart H, Ca og Na i torv.

Innhold av uorganiske stoffer i moser varierer mellom arter. Det kjemiske innholdet i torv, myrvann og moser viser generelt et lågt forurensingsnivå sammenlignet med områder lenger sør i Europa. Emneord: Industriutbygging - forurensing - overvåking - myrvegetasjon - torv - myrvann - DCA - CCA - LNMDS.

Per Arild Aarrestad & Arne A. Frisvoll, Norsk institutt for naturforskning, Tungasletta 2, 7005 Trondheim.

Odd Eilertsen, Norsk institutt for naturforskning, Dronningensgt. 13, 0105 Oslo

Abstract

Aarrestad, P.A., Frisvoll, A. & Eilertsen, O. 1996. Monitoring of ombrotrophic mire, Havmyran - Hitra 1995. Investigation of vegetation, peat and bog water. - NINA oppdragsmelding 423: 1-78

A reference area for monitoring ombrotrophic mire was established in the Havmyran Nature Reserve on Hitra, in the county of Sør-Trøndelag, in 1995. The project was initiated by Statoil in connection with industrial development at Tjeldbergodden in the neighbouring county of Møre & Romsdal. The aim is to reveal changes in vegetation that may occur as a result of pollution from this development. The possible effects of increased nitrogen deposition are being particularly considered.

Five transects were laid out to cover as much as possible of the floristic and ecological diversity in the hummock-hollow gradient on the bog. 100 sample plots (0.5 x 0.5 m) were analysed for species frequency and percentage cover abundance. Peat and bog water were collected from the sample plots. The peat samples were analysed for exchangeable and extractable elements (1M NH₄NO₃) and total nitrogen. The water samples were analysed for pH, conductivity, total N and NO₃⁻. Four moss species were analysed for their total content of cations and nitrogen.

The vegetation and environmental data have been treated numerically using multivariate methods. Classification was performed by TWINSPAN and Bray-Curtis similarities. Indirect gradient analysis was performed by DCA and LNMDS. Direct gradient analysis was carried out with CCA. The variation explained by each environmental variable was found and tested using partial CCA and Monte Carlo permutation tests. Kendall's τ was used for correlation analysis between environmental variables and values of DCA axes, and between the environmental variables themselves. Correlation between environmental variables was also investigated using PCA.

The vegetation analysed is representative for raised atlantic bogs. 25 vascular species, 49 bryophytes and 19 lichens were recorded, giving a total of 93 species. TWINSPAN divides the analysed sample plots into four groups: *Racomitrium lanuginosum* hummocks, *Sphagnum* hummocks, lawns and carpets. The indirect gradient analysis reflects the hummock-hollow gradient along the first DCA axis. The variation of species along the second axis is related to different substrates and soil richness. The ordination of species frequency and percentage cover data gave approximately the same results. Depth to water table' is the most important explanatory variable shown by CCA. The next most important variables are total N, base saturation, pH and exchangeable H, Ca and Na in peat. The content of inorganic elements in mosses differs between species. The chemical content of peat, bog water and mosses reflects a low pollution level compared with bogs further south in Europe.

Key words: industrial development - pollution - monitoring - mire vegetation - peat - bog water - DCA - CCA - LNMDS.

Per Arild Aarrestad & Arne A. Frisvoll, Norwegian institute for Nature Research, Tungasletta 2, N-7005 Trondheim.

Odd Eilertsen, Norwegian institute for Nature Resarch, Dronningengt. 13, N-0105 Oslo, Norway.

Forord

Statoil står foran en større industriutbygging på Tjeldbergodden med ilandføring og mottaksanlegg for gass fra Haltenbanken, og etablering av anlegg for produksjon av metanol og luftgasser. Når anleggene kommer i drift, kan utslipp av forurensende stoffer til luft gi miljøeffekter på særlig sårbare vegetasjonstyper. I denne forbindelse har Statoil gitt Norsk institutt for naturforskning (NINA) i oppdrag å etablere et vegetasjonsøkologisk overvåkingsområde i Havmyran naturreservat på Hitra, med referansekartlegging av myrvegetasjon og miljø før utbygging. Prosjektet er en videreføring av et overvåkingsprogram for miljøet rundt Tjeldbergodden, utarbeidet i fellesskap av NILU, NIVA, NISK, ALLFORSK og NINA i 1993 (Thomassen 1995).

Vegetasjonsovervåking av myr er tidligere ikke utført i Norge, og det er lagt ned et større arbeid i å utvikle egnede metoder. De valgte metodene er basert på eksisterende litteratur for botanisk overvåking generelt, og fra forskningsprosjekter på myr. Per Arild Aarrestad og Odd Eilertsen har stått for metodeutviklingen. Arne A. Frisvoll utførte vegetasjonsanalysene i juli/august 1995. Torv- og vannprøver ble samlet inn av Ingvar Brattbakk og Per Arild Aarrestad i september samme år.

Avstandene på Havmyran er store, og terrenget er særdeles tungt og tidkrevende å gå i. En uforholdsmessig stor andel av feltarbeidet gikk med til å gå til og fra lokalitetene. Ved gjenanalyse bør det søkes om tillatelse til å etablere en midlertidig barakke ute på selve Havmyran.

Vi takker Kjell I. Flatberg for en svært nyttig rekognisering for myrarter og myrtyper. Håkon Holien takkes for bestemmelser av lavkollekter, og Johannes Håvik for leie av hytte og transport av utstyr.

Trondheim og Oslo, juni 1995

Per Arild Aarrestad

Arne A. Frisvoll Odd Eilertsen

Innhold

Re Ab Fo	eferat ostract orord		3 4 5
1	Innledr	ning	6
2	Myrdef	finisjoner, terminologi og gradienter	7
3	Unders 3.1 3.2 3.3	søkelsesområdet Geografisk plassering Naturgrunnlag og vegetasjon Ytre påvirkning	8 8 8 . 10
4	Materia 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10 4.11	ale og metoder Vegetasjonsanalyser Miljøparametere Plantevevsprøver Kjemiske analyser Behandling av vegetasjonsdata Behandling av miljøparametre Indirekte ordinasjon Diversitet Direkte ordinasjon Korrelasjonsanalyser	. 10 . 14 . 14 . 15 . 15 . 15 . 15 . 16 . 16 . 17
5	Resulta 5.1 5.2 5.3	at Vegetasjon Miljøvariabler Plantevevsprøver	. 17 . 17 . 36 . 42
6	Diskus 6.1 6.2 6.3	ijon Feltmetodikk Indirekte gradientanalyser og klassifikasjon Direkte gradientanalyser og miljøparametere	. 45 . 45 . 46 . 46
7	Samm	endrag	. 47
8	Summ	ary	. 48
9	Litterat	tur	. 50
Ve Ve Ve Ve Ve	edlegg 1 edlegg 2 edlegg 3 edlegg 4 edlegg 5 edlegg 6 edlegg 7 edlegg 8		. 53 . 55 . 63 . 71 . 73 . 75 . 77 . 78

1 Innledning

Denne rapporten presenterer en vegetasjonsøkologisk overvåking av ombrotrof myr på Havmyran i Hitra kommune, Sør-Trøndelag. Prosjektet er en del av Statoils overvåkingsprogram for å kunne påvise eventuelle miljøeffekter av utslipp til luft fra metanolfabrikken på Tjeldbergodden. Tidligere er det opprettet overvåkingsflater i skog på Tjeldbergodden og ved Terningvatn (Eilertsen & Fremstad 1994,1995).

Det er særlig utslipp av No_X gasser som kan påvirke vegetasjonen ved gjødslingseffekt eller forsuring av vann og jordsmonn. Tålegrensen for totalt nitrogennedfall på ombrotrof myr er satt til 500-1000 mg N/m² pr år (UN ECE Task Force on Mapping Workshop in Geneve 1995, Hornung et al. 1995). Bakgrunnsnivået på Tjeldbergodden er i dag 200-400 mg N/m² pr år (Tørseth & Pedersen 1994) varierende etter årsnedbøren. Metanolfabrikken og et eventuelt 350 MW gasskraftverk vil maksimalt øke nedfallet med 40 mg N/m² pr år (Knutsen et al. 1996). Vi nærmer oss da den nedre tålegrense for nedbørsmyr, og det er også sannsynlig at langtransportert nitrogennedfall vil øke i årene som kommer.

Ombrotrofe myrer (nedbørsmyrer) er avhengig av tilførsel av næringsstoffer fra nedbøren og blir ansett som et av de mest følsomme systemene overfor økt nitrogennedfall (Press et al. 1986, Lee et al. 1987). Artsinventaret på disse myrene er tilpasset låg nitrogentilførsel, og nitrogen er normalt ansett å være en vekstbegrensende faktor (Malmer 1993, Aerts et al. 1992). Det finnes en litteraturstudie utført av Bakken & Flatberg (1995) om effekter av økt nitrogenavsetning på nedbørsmyr, og en kunnskapsoppsummering om emnet av Tybirk et al. (1995). Disse viser at det i Nordvest-Europa er observert endringer i produksjon og konkurranseforhold mellom arter av torvmoser (Sphagnum) og en økning av middels næringskrevende karplanter som blåtopp (Molinia caerulea) og duskull (Eriophorum angustifolium). I områder med låg nitrogentilførsel har mosedekket på nedbørsmyr evne til å ta opp og holde på atmosfærisk tilført nitrogen. Ved høg nitrogenavsetning vil imidlertid evnen til å ta opp nitrogen avta. Mer nitrogen tilføres rotsonen og blir tilgjengelig for karplanter som således kan få økt vekst. Endringer i konkurranseforholdet mellom torvmoser og karplanter kan også skyldes endringer i nedbrytningshastighet av strø, og økt mineralisering av akkumulert organisk materiale ved økt nitrogentilførsel. I Nederland har artssammensetningen i mosesjiktet på myr endret seg fra de karakteristiske torvmoseartene til mer nitrogenkrevende arter (Greven 1992, Lütke Twenhöven 1992). I Storbritannia har svært høg nitrogenbelastning vist vekstreduksjon og nedgang i populasjoner av torvmoser (Press et al. 1986). I Sør-Sverige har nedbørsmyrer blitt mettet med nitrogen ved dagens avsetning på 1 000-1 300 mg N/m² pr år, noe som har resultert i økt torvmosevekst. Fosfor er nå blitt den begrensende faktor og ikke nitrogen (Aerts et al. 1992). Slike strukturelle endringer kan skje allerede rundt 700 mg N/m² pr år. I Finland har Jauhiainen

et al. (1992/93) vist at enkelte torvmoser reagerer negativt på høge nitrogenbelastninger, mens andre viser større toleranse overfor nitrogen. I Norge er det ikke utført undersøkelser som viser effekter av nitrogenpåvirkning på myrvegetasjon, men det er nærliggende å anta at endringer også skjer på norske nedbørsmyrer med høg nitrogenbelastning.

Formålet med vegetasjonsovervåkingen på Havmyran er å vise om det over tid skjer endringer i vegetasjon, torv og myrvann på grunn av utslipp til luft fra industrien på Tjeldbergodden, særlig med tanke på økt nitrogenavsetning.

Denne rapporten presenterer resultatene fra 1995, da overvåkingsfeltene ble etablert, og gir en beskrivelse av tilstanden i vegetasjon og miljø før utbygging. Det er i denne omgang lagt mindre vekt på sammenligninger med undersøkelser fra andre steder i Norden og Europa.

2 Myrdefinisjoner, terminologi og gradienter

Myr er et landområde med torv og vegetasjon bestående av myrplanter. Begrepet **myrplanter** omfatter både planter som bare vokser på myr (obligate myrplanter), og planter som også forekommer i vann, sump og på fastmark (fakultative myrplanter). En forutsetning for myr- og torvdannelse er et **grunnvannspeil** (vannivå i myra) som mesteparten av året ligger i eller nær markoverflata. Den delen av grunnvannet som har nærkontakt med vegetasjonen, kalles for **markfuktighet** (Sjörs 1948).

Ombrotrof myr (nedbørsmyr) dannes der markfuktigheten utelukkende stammer fra nedbør i form av regn eller smeltevann. **Minerotrof myr** (jordvannsmyr) dannes der markfuktigheten også består av jordvann som har vært i kontakt med mineraljord eller berggrunn (Sjörs 1983). Den inndeles i **fattigmyr**, **intermediærmyr** og **rikmyr** alt etter næringsinnhold i torv og myrvann.

Mindre topografiske enheter med et bestemt plantesamfunn kalles **myrstrukturer** (terminologi etter Fremstad & Elven 1987, Moen & Singsaas 1994). På ombrotrof myr skiller man mellom **tuer** og høljer. Tuenes høgde varierer med alder og utviklingsstadium, og her vokser mer eller mindre tørketålende arter. Høljer er flatere partier med relativt høg grunnvannstand. De deles igjen inn i **fastmatter**, **mykmatter** og løsbunn. Fastmatter inntar nivået nedenfor tuene og domineres av graminider (gras og graslignende planter) og torvmoser (*Sphagnum*). Mykmatter er konstant fuktige partier med færre karplanter, men med et velutviklet bunnsjikt av moser. Løsbunn er partier med åpen torv, mest uten bunnsjikt og med et glissent feltsjikt av graminider og vannplanter.

Der ombrotrofe partier siger utover mot sidene, sprekker overflaten opp. Her dannes det åpne **gjøler** (vannansamlinger) som veksler med tuepartier.

l overvåking av myrvegetasjon må man være oppmerksom på at myrstrukturene over tid er i endring. Høljer med fuktighetskrevende vegetasjon vokser til med torvmoser og hever seg til tuer med lyngdominert vegetasjon. Disse eroderes så ned igjen til grunnvannspeilet (tue - hølje syklus).

De viktigste økologiske gradientene på nordlige myrer er:

- 1 *Fattig rik gradienten* som er korrelert med den kjemiske sammensetningen i torv og grunnvann.
- 2 *Tørr fuktig gradienten* som er korrelert med grunnvannspeilets høgde og vekslinger gjennom året.
- 3 *Myrflate myrkant gradienten* som er en kompleksgradient korrelert bl.a. med torvdybde, torvstruktur, skyggeeffekt og oksygeninnhold i torv og grunnvann.

4 Gradienten låg - høg torvproduksjon, som er korrelert med erosjon og andre abiotiske forstyrrelser og bunnvegetasjonens evne til å produsere torv.

Gradientene er beskrevet bl.a. i Sjörs (1947, 1948, 1950), Malmer (1962) og Økland (1989a,b, 1990a). Hver av de økologiske gradientene gir opphav til vegetajonsgradientene (basert på forekomst av arter): 1) *fattig - rik gradienten*, 2) *tue - hølje gradienten*, 3) *myrflate - myrkant gradienten* og 4) *torvproduksjonsgradienten*.

3 Undersøkelsesområdet

3.1 Geografisk plassering

Undersøkelsen er lagt til Havmyran naturreservat på Hitra i Sør-Trøndelag (**figur 1**). Naturreservatet ligger på et 50-90 m høgt platålignende parti midt på øya. Det er skjermet av fjell mot VSV og ØNØ, men ligger åpent mot vindretninger fra SV og NV. Fem vegetasjonstransekter, A-E, er lagt ut i nordre deler av naturreservatet i området rundt ytre Langvatn, mellom ytre Leberget (126 m o.h.) og Håvikfjellet (270 m o.h.) (**figur 2**). UTM-referanser til transektene på kartblad 1422 III Sør-Frøya: Transekt A: MR 806 446, B: MR 807 447, C: MR 814 438, D og E: MR 823 446.

NILU har en overvåkingsstasjon på Vårli rett sør for reservatet, og ALLFORSK har lagt ut overvåkingsfelter for epifyttisk lav på trær langs sørøstsiden av Hitra (Bruteig 1996).

3.2 Naturgrunnlag og vegetasjon

Berggrunnen i Havmyran naturreservat består hovedsakelig av relativt sur og hard dioritt (Sigmond et al. 1984). Jordsmonnet varierer i tykkelse fra tynn torv over bergknauser til flere meter dype avsetninger. Siden området ligger under den marine grense, kan det under torvsedimentene finnes mineralrike avsetninger som gir næring til planter med dype rotsystemer. Det er flere små vann og åpne gjøler i myrlandskapet.

Klimaet er oseanisk med en middeltemperatur like under null for vintermånedene januar og februar, mens middeltemperaturen i juni og august ligger mellom 11 og 13 °C (DNMI 1993a). Årsnedbøren er ca. 1100 mm med et maksimum i høstmånedene og med relativt lite nedbør om våren og sommeren (DNMI 1993b). Dette medfører at området har et stabilt snødekke i vintermånedene, og da snøsmeltningen skjer tidlig på våren, er myrene nokså tørre på forsommeren. Vannivået i myrene øker generelt utover høsten, men det skjer også stadige nivåvekslinger gjennom hele vekstsesongen etter variasjon i nedbøren.

Figur 1. Tjeldbergodden industrianlegg og Havmyran naturreservat på Hitra. Stasjoner og områder hvor det pågår miljøovervåking. - Tjeldbergodden industrial area and Havmyran nature reserve on Hitra. Sites and areas with environmental monitoring.

Figur 2. Transektenes posisjoner i overvåkingsområdet. - The positions of the transects in the monitoring area.

Vegetasjonen på Havmyran ble nøye undersøkt på 60-tallet (Skogen 1969, 1970). De ombrotrofe myrene i naturreservatet har ofte uklare overganger mellom tuer og høljer. Tuer med lyngvekster, heigråmose (*Racomitrium lanuginosum*) og lav dominerer ofte totalt på store høgvokste myrflater med dyp torv, men også på tynnere jord over bart fjell. Typiske høljer er lite framtredende og består i hovedsak av fastmatter med små, flekkvise innsalg av mykbunnsvegetasjon. Gjøler og erosjonsrenner med bar torv omgitt av høge tuer finnes også på myrflatene. Storparten av de ombrotrofe myrpartiene på Havmyran klassifiseres som atlantisk høgmyr (Moen 1983). Minerotrof vegetasjon, både fattig, intermediær og rik, finnes i mosaikk mellom de ombrotrofe myrenhetene. Rik myrvegetasjon finnes særlig i overgangen mellom bergskrenter og ombrotrofe myrpartier midt i dalsøkk, og der planterøtter kan nå marine sedimenter.

Vegetasjonen på Hitra hører inn under den sterkt oseaniske seksjon (Moen & Odland 1993), og det er et markert innslag av oseaniske arter i myrfloraen, m.a. klokkelyng (*Erica tetralix*), pors (*Myrica gale*), rome (*Narthecium ossifragum*), loppestarr (*Carex pulicaris*), engstarr (*Carex hostiana*), heisiv (*Juncus squarrosus*), brunmyrak (*Rhynchospora fusca*), kystkransmose (*Rhytidiadelphus loreus*), heitorvmose (*Sphagnum strictum*) og kysttorvmose (*S. austinii*).

3.3 Ytre påvirkning

Undersøkelsesområdet ligger i et naturreservat og er således beskyttet av dets regler om bruk og ferdsel. Transektene er lagt ut i stor avstand fra merkede stier, men noe ferdsel i forbindelse med jakt og fiske kan forventes. Hitra har en stor hjortebestand og Havmyran er et lett tilgjengelig beiteområde, noe som kan sees på en rekke tråkk langs bergrygger. Beitetrykket ute på myrene er mindre enn på fastmark langs trekkene, og det vil sannsynligvis ha liten innvirkning på vegetasjonen i de analyserte transektene.

4 Materiale og metoder

Metodikken som er benyttet følger delvis NINAs konsept for vegetasjonsøkologiske undersøkelser i programmet for terrestrisk naturovervåkning (TOV) (jf. Eilertsen & Fremstad 1994, Eilertsen & Often 1994), og er her tilpasset myr. Vegetasjonsovervåking av myr er tidligere ikke utført i Norge, og det er lagt ned et større arbeid i å utvikle egnede metoder.

4.1 Vegetasjonsanalyser

Utvelgelse av område og vegetasjonsgradienter

Søre deler av naturreservatet ble befart høsten 1994 og nordre deler våren 1995. Med tanke på nærheten til utslippskilden på Tjeldbergodden, NILUs målestasjoner for luftforurensning og overvåkingsområdene av epifyttisk lav (se kap. 3.1) ville søre deler av området være å foretrekke. Dette området viste seg imidlertid å være dårlig egnet til overvåking av ombrotrof myrvegetasjon, da det er svært oppstykket med mye bart fjell og minerotrofe myrpartier. De store ombrotrofe myrarealene ligger i midtre og nordre deler av naturreservatet. Ut fra botaniske kriterier og atkomstmuligheter ble således området rundt Ytre Langvatnet valgt som overvåkingsområde. De overvåkte arealene består hovedsakelig av ombrotrofe tue-høljegradienter med enkelte innslag av fattig til middels rik, minerotrof vegetasjon. Tuer, fastmatter og mykmatter ble analysert, mens vegetasjon på løsbunn og i åpent vann ble ekskludert grunnet fastrutemetodikken.

Transekter og analysefelter

Det ble lagt ut fem transekter (A, B, C, D og E) med subjektivt valgte start og endepunkter (**figur 3**). Hvert transekt består av to parallelle linjer med 2,5 m mellomrom. Analysefelter med størrelse 2,5 x 5 m ble avgrenset mellom transektlinjene slik at de to linjene i hvert transekt danner langsidene i analysefeltene. Analysefeltenes plassering ble subjektivt valgt for å dekke opp mest mulig av den floristiske og økologiske variasjon i transektet. Totalt ble det lagt ut 20 analysefelter fordelt på de fem transektene.

Transekt A (bilde 1 i vedlegg 8) starter på et høgdedrag med relativ tørr, tuepreget vegetasjon over bart fjell og fortsetter i sørøstlig retning nedover en svak skråning med vekslende ombrotrof tue-høljevegetasjon. Det ender opp i et parti med stagnerende grunnvann i dagen og med noe minerotrof vegetasjon. Transektet er 138 m langt og inneholder 8 analysefelter og 40 analyseruter (se nedenfor).

Transekt B (bilde 2 i vedlegg 8) starter på tynt humusdekke over bart fjell og fortsetter i nordøstlig retning utover en ombrotrof myrflate med fastmatter og mykmatter. Det ender opp i et sterkt tuepreget parti ved en åpen gjøl. Transektet er 100 m langt og inneholder 6 analysefelter og 30 analyseruter.

(7-12 m)

A219

A229

(45-60 m)

A418

A428

(96-101 m)

A628

A829

(133-138 m)

A816

A619

A616

Figur 3. Analyserutenes plassering og nummerering i transekt A-E. - Distribution and number of the sample plots in transect A-E.

© Norsk institutt for naturforskning (NINA) 2010 http://www.nina.no Vennligst kontakt NINA, NO-7485 TRONDHEIM for reproduksjon av tabeller, figurer, illustrasjoner i denne rapporten.

Transekt C dekker vegetasjon på tuepreget myr med dype torvavsetninger. Dette er kanskje den mest typiske utformingen for de store atlantiske høgmyrflatene på Havmyran (**bilde 3** i **vedlegg 8**). Transektet er 26 m langt og inneholder to analysefelter med 10 analyseruter.

Transekt D ligger på ombrotrof myr som trolig er utviklet over minerotrofe partier (**bilde 4** i **vedlegg 8**). Det går i nordlig retning fra ombrotrofe tuer til åpent vann med noe minerotrof vegetasjon. Transektet er ca. 60 m langt og inneholder tre analysefelter og 15 analyseruter.

"Transekt" E består kun av ett analysefelt og ble tatt ut for å få med høge, velutviklede heigråmosetuer i materialet. Denne vegetasjonsutformingen ble ikke dekt opp i de andre transektene. Feltet ligger rett ved siden av transekt D i nordlig retning.

Plassering av analyseruter og oppmerking

Fem analyseruter på 0,5 x 0,5 m ble lagt ut på innsiden av langsidene i hvert analysefelt. Langs hver langside er det mulig å legge ut 10 slike ruter, totalt 20 i hvert analysefelt (**figur 3**). Beliggenheten av tre ruter langs den ene og to ruter langs den andre langsiden ble trukket ut ved hjelp av en liste med tilfeldige tall (Kershaw & Looney 1985). Plasseringen skulle veksle regelmessig fra felt til felt, men grunnet forkastelseskriterier nevnt nedenfor ble det enkelte ganger tilfeldig hvilken side som fikk tre ruter. Det ble totalt lagt ut 100 analyseruter i de fem transektene. Denne metoden er en begrenset, tilfeldig ruteplassering (restricted, random sampling, jf. Økland 1990b) og kan således danne grunnlag for en pålitelig statistisk behandling av dataene. Analyseruter som havnet på flater og tuer utsatt for erosjon, var påvirket av tråkk, eller lå under vann ble forkastet, og ny rute ble trukket ut. Avstanden mellom hver rute skulle være minst 1 m for å unngå for mye tråkk nær rutene.

Transektene ble merket i start og endepunkt ved hjelp av trepåler, og analysefeltene ble avgrenset med bambuspinner i hvert hjørne (se **bilde 6** i **vedlegg 8**). De 100 analyserutene ble merket med en trepinne øverst i venstre hjørne (sett fra utsiden av langsiden i analysefeltet), samt aluminiumsrør i tre hjørner for feste av analyseramme. Trepinnene er påført rutenummer med tusj og bør remerkes hvert år pga. solbleking. Rutenummereringen, f.eks. A521, følger et system med transektbokstav (A), nummer på analysefeltet (5), nummer på sidelinjen i transektet (2) og nummer på analyseruten langs sidelinjen (ett tall fra 0-9, her nummer1). Sett fra transektets startpunkt er venstre sidelinje definert som nr. 1 og høgre sidelinje som nr. 2.

Ruteanalysering og mengdeangivelse av arter

Analyserutene ble undersøkt ved hjelp av en aluminiumsramme på 0,5 x 0,5 m som var delt i 3 x 3 småruter (se **bildene 5-8** i **vedlegg 8**). I hver av de ni 1/36 m² store smårutene ble forekomst/fravær av alle arter av karplanter, moser og lav registrert. En tredelt skala ble benyttet: forekomst av ett individ, forekomst med mindre enn 50 % dekning, og forekomst med 50 % dekning eller mer. Disse registreringene danner grunnlaget for utrekning av artenes smårutefrekvens (senere kalt frekvensdata) og nyttes til kvantitativ mengdeangivelse av artene i analyseruta. I tillegg er det i alle analyserutene angitt prosent dekning av hver art, basert på horisontalprojeksjon av arten på bakken. Denne

informasjonen gir et supplement til smårutefrekvensdataene, og vil kunne være av betydning for vurderingen av endrete dominansforhold over tid.

Alle analyserutene ble fotografert med 35 mm objektiv for ekstra dokumentasjon av arter, mengdeforhold og struktur (se **vedlegg 8**).

Sjiktdekning og gjennomsnittlig høgde av plantegrupper

Total dekning av busksjikt, feltsjikt, bunnsjikt, åpen jord/stein, strø og vann i dagen ble registrert for hver analyserute. Til busksjiktet hører dvergbjørk (*Betula nana*) og vier-arter (*Salix*). Feltsjiktet består av lyng, urter og graminider, og til bunnsjiktet hører moser og lav. I tillegg ble dekning av feltsjiktet vurdert i tre kategorier: 1) lyng/forvedet feltsjikt, 2) urter og 3) graminider. Gjennomsnittlig høgde ble målt for graminider, urter og lyng.

Vegetasjonsanalysene ble utført i tidsrommet 7. juli til 7. august. Ved reanalysering bør tidspunktet vurderes slik at vegetasjonsutviklingen det aktuelle året kan sammenlignes med 1995.

Nomenklatur

Nomenklaturen følger Lid & Lid (1994) for karplanter, Frisvoll et al. (1995) for moser og Krog et al. (1994) for lav.

4.2 Miljøparametere

I forbindelse med vegetasjonsanalysene er det samlet inn torv, myrvann og plantevevsprøver til analyse av ulike kjemiske elementer. Disse miljøparameterene vil kunne forklare dagens artssammensetning i vegetasjonen, og samtidig danne grunnlaget for senere analyser av eventuelle kjemiske endringer i myrsystemet og endringer i vegetasjonen, relatert til utslippene fra Tjeldbergodden. Miljøparameterene ble samlet inn 6.-7. september 1995, etter flere dager uten nedbør. Alle jordprøver ble tatt første dag, mens innsamling av vannprøver, plantevevsprøver og målinger av vegetasjonsoverflatens nivå i forhold til grunnvannstanden ble utført andre dag.

Torv-/jordprøver

Torvprøver til kjemisk analyse ble tatt 5-10 cm utenfor hver av de 100 analyserutene ved hjelp av et russerbor. Der hvor torvmoser dannet bunnvegetasjonen, ble prøvene tatt fra -5 til -20 cm fra overflaten. På gråmosehei over berg ble jordprøvene tatt rett under den levende gråmosen, 15 cm ned hvis mulig. Disse prøvene ble ofte en blanding av død gråmose og godt omsatt humus. Vannet i torvprøvene fikk renne av og deretter ble prøvene lagt i polyethylen poser. På grunn av lang transport ble jordprøvene liggende i felt i ett døgn før lufttørking ved 30 °C. Deretter ble de siktet gjennom 2 mm sikter og hvis nødvendig, malt eller knust i en morter. Desverre forsvant en prøve under transport, og tre ble feilnummerert under tørkeprosessen. Det ble således analysert torvprøver fra i alt 96 analyseruter.

Vannprøver

I hullet som oppstod etter uttak av jordprøvene, ble det satt ned et opp til 60 cm langt drensrør av polyethylen (48 mm diameter). Tilgjengelig myrvann drenerte inn i røret, og etter ett døgn med stabilisering av vannmiljøet ble 250 ml vann samlet opp fra den øvre del av vannsøylen og fylt på polyethylen flasker. Vannprøvene ble samme dag satt til kjøling ved 4 °C og etter to dager sendt til NISK for kjemisk analyse. Totalt ble det samlet inn vannprøver fra 81 analyseruter. Torven i de resterende 19 rutene var for tørr til at vann kunne drenere inn i rørene. I tillegg ble det samlet inn vannprøver fra de øverste 10 cm fra fire gjøler nær transektene.

Høgde over vann-nivå

Samtidig med vannprøvetakingen ble avstanden fra vannoverflaten inne i røret til det gjennomsnittlige overflatenivå i vegetasjonsruten målt. Denne avstanden, kalt høgde over vann-nivå, eller dybde til vann-nivå, er benyttet som en økologisk faktor ved tolkning av vegetasjonsdataene. Der vann-nivået lå under 60 cm fra overflaten eller hvor vannivå manglet helt, ble avstanden satt til en fiktiv verdi på 100 cm. Dette ble gjort fordi de direkte ordinasjonsmetodene (se kap. 4.10) er avhengig av at miljøvariablene må ha en verdi i alle analyserutene.

4.3 Plantevevsprøver

I nærheten av hvert analysefelt ble det samlet inn to prøver av utvalgte moser til kjemisk analyse, totalt 40 prøver fordelt på artene heigråmose (*Racomitrium lanuginosum*), kysttorvmose (*S. austinii*), vortetorvmose (*Sphagnum papillosum*) og vasstorvmose (*S. cuspidatum*). Mosene representerer en økologisk gradient fra tue til hølje. De øverste 3 cm av individer fra samme art ble klippet med saks, samlet i en polyethylenpose og deretter lagt til tørk samme dag ved ca. 25 °C. Moseprøvene ble så most gjennom en 1 mm sikt for kjemisk analyse.

4.4 Kjemiske analyser

Jordprøver, vannprøver og plantevevsprøver ble analysert av NISKs kjemiske laboratorier etter metoder beskrevet i Ogner et al. (1991).

Jordprøvene ble ekstrahert med 1M NH₄NO₃, titrert for utbyttbar aciditet og analysert på ICP (inductively coupled plasma emission spectroscopy) for utbyttbare ioner og ekstraherbare elementer (Al, B, Ba, Be, C, Ca, Fe, K, Li, Mg, Mn, Na, P, S, Sc, Sr, og Zn). Utbyttingskapasitet av kationer (CEC) ble regnet ut i henhold til CEC_{NH4NO3} = utbyttbar aciditet + Na⁺ + K⁺ + Ca⁺ + Mg⁺ + Mn⁺ (mmol(p+)/kg) jord. Basemetning (BS) ble regnet ut i henhold til BS_{NH4NO3} = (Na⁺ + K⁺ + Mg⁺ + Ca⁺)/CEC_{NH4NO3} x 100 %. I tillegg ble jordprøvene analysert for pH i vannuttrekk og Kjeldahl total nitrogen. pH og ledningsevne i vannprøvene ble analysert umiddelbart etter ankomst til laboratoriet. Deretter ble prøvene filtrert og konservert for analyse av total nitrogen og NO₃⁻. Totalt nitrogen overføres til nitrat ved oppslutning i persulfat. Nitrat reduseres til nitritt som bestemmes ved FIA-analyse (flow injection analysis). Vannprøvene fra gjølene ble også analysert for totalinnhold av elementene AI, B, C, Ca, Cu, Fe, K, Mg, Mn, Na, P, S og Zn ved hjelp av ICP-metodikk.

Mosene ble analysert for totalt innhold av kationer (AI, B, Ba, Ca, Cd, Co, Cu, Fe, K, Mg, Mn, Mo, Na, Ni, P, Pb, S, Se, Sn, Sr, Zn) ved ICP etter oppslutting med 72 % HCI og 70 % HNO₃ (i forholdet 1:5) i lukkede teflonbeholdere. Totalt nitrogen ble analysert etter Kjeldahl-metoden.

4.5 Behandling av vegetasjonsdata

Vegetasjonsdata ble innlest ved hjelp av programmet PC-BOTPROG ved NINAs database. Standardisering ved veiing av matriseelementer og nedveiing av sjeldne arter (se nedenfor) ble utført ved hjelp av programpakken BDP (Biological Data Program/PC) Pedersen (1988). Alle data ligger tilgjengelig i NINAs database i Trondheim.

Standardisering ved veiing av matriseelementer

Skalaen for artenes mengdeangivelse har i utgangspunktet en rekkevidde r = 9 for smårutefrekvens-datasettet og r = 100 for dekningsgrads-datasettet. Dette gir en vesentlig forskjellig vektlegging av dominanter i de to datasettene. Da ordinasjonsresultater varierer med skalarekkevidder (Eilertsen et al. 1990) har vi valgt å sette r = 9 for begge datasettene, noe som gir en moderat vektlegging av dominater (Smartt et al. 1974a, 1974b, Jensén 1978, Økland 1986). For å redusere rekkevidden på prosentdeknings-datasettet har matriseelementer blitt veiet. Dette er utført ved hjelp av følgende "power function" (van der Maarel 1979, Clymo 1980):

der x_{ij} er de opprinnelige og y_{ij} de veiete verdiene av art i i analyserute *j*, a er en rekkevidde-skalar og w en veieparameter. w fremkommer ved å dividere In til den nye rekkevidden med In til den opprinnelige. For prosentdeknings-datasettet ble således w = In9/In100 = 0,48.

Nedveiing av sjeldne arter

Enkelte arter med lav frekvens i totalmaterialet vil kunne få en tilfeldig plassering i ordinasjonsplottet. Dersom disse blir gitt for stor vekt, vil de redusere strukturen i materialet, bidra til støy (bias) eller opptre som avvikere (outlayers). En vanlig måte å redusere støyen på er å fjerne disse artene. Problemet er at en reduserer noe av strukturen når lavfrekvente arter med noe økologisk informasjon elimineres. En måte å beholde alle artene på, og likevel redusere betydningen av lavfrekvente arter, er å foreta nedveiing av disse. Det har vært diskutert hvor velegnet nedveiingsopsjonen i CANOCO (ter Braak 1988, 1990) er. Eilertsen & Pedersen (1989) har foreslått en alternativ nedveiingsprosedyre, der nedveiingen blir utført på alle arter med lågere frekvens enn medianfrekvensen, istedenfor standardopsjonen på 20 % av maksimalfrekvensen. I BDP er algoritmen for median nedveiing etter Eilertsen et al. (1990) lagt inn;

$$v_i' = (F_i/F_m)^n \cdot v_i$$

der v_i er den nye og v_i opprinnelige verdien til art *i*, og *n* er en positiv skalar som bestemmer graden av nedveiing av lavfrekvente arter. I dette arbeidet har vi valgt å sette n = 1. Den nye verdien av v_i gjør at vi beholder lavfrekvente arter og gir dem lavere vekt, men kan utnytte deres økologiske informasjon (Westhoff & van der Maarel 1978).

Etter standardisering og nedveiing ble det opprettet "Cornell Condensed Files" (CCF-filer) som input til ordinasjonsprogrammene.

4.6 Behandling av miljøparametre

Kjemiske miljøparametere ble innlest ved hjelp dataprogrammet CEDIT versjon 3.5, som er inkorporert i dataprogrammet CANOCO (ter Braak 1988, 1990). Alle data ble eksportert som fullformatfiler for statistisk analyse og som CCF-filer for numerisk bearbeiding. De er tilgjengelige ved NINAs database i Trondheim.

4.7 Indirekte ordinasjon

DCA-ordinasjon

Vegetasjonsanalysene baserer seg bl. a. på DCA-ordinasjon, "Detrended Correspondence Analysis" (Hill 1979a, Hill & Gauch 1980). Ordinasjonene er utført ved hjelp av programpakken CANOCO version 3.12 (ter Braak 1988, 1990), og ordinasjonsdiagrammer er laget ved hjelp av dataprogrammet CANODRAW (Smilauer 1992). For å få en mest mulig adekvat plassering av ruter og arter i ordinasjonsrommet, ble en opsjon for ikke-lineær reskalering av aksene benyttet. Aksene blir da skalert i såkalte standardavvikenheter (SD-enheter). Disse SD-enhetene fremkommer ved beregning av gjennomsnittlig standardavvik for alle artene i materialet, gitt tilnærmet normalfordelt artsrespons. En art vil stort sett komme inn, nå sitt optimum og forsvinne i løpet av 4 SD-enheter. Ordinasjonsaksenes lengde kan således tolkes som et mål på gradvis endring av artssammensetning langs gradientene. Videre vil avstanden mellom rutenes posisjoner i ordinasjonsdiagrammet angi grad av ulikhet i artssammensetning mellom rutene, på samme måte som avstanden mellom artssentroidenes posisjoner vil være proporsional med ulikheten mellom artene.

To datasett ble benyttet i DCA-analysene:

 Nedveid frekvensdatasett på 100 analyseruter, der artsmengder ble angitt med smårutefrekvensverdier. Standardisert og nedveid prosentdatasett på 100 analyseruter, der artsmengder ble angitt med prosent dekningsverdier.

l begge analysene ble opsjonene for "detrending" med segmenter og ikke-lineær reskalering valgt. Dette for å hindre negativ bueeffekt og kanteffekt (jf. Økland 1990b).

LNMDS-ordinasjon

Det ble utført en LNMDS-ordinasjon (Local Nonmetric Multidimentional Scaling) av frekvensdatasettet basert på 100 analyseruter. Ordinasjonen ble utført ved hjelp av programpakken PRIMER (Plymouth Routines In Multivariate Ecological Research), jf. Carr (1990) og Clarke (1991). Ordinasjonen, slik den ble utført med prosedyren MDS, er identisk med LNMDS-prosedyren i programpakkene KYST (Kruskal et al. 1973) og DECODA (Minchin 1986). En sekundærmatrise ble laget ved hjelp av prosedyren CLUSTER, basert på Bray-Curtis ulikhetsmål. Dette ulikhetsmålet (prosent ulikhet) er av Faith et al. (1987) vurdert som et av de beste relasjonsmål, gitt standardisering med divisjon på arts-maksima. LNMDS-ordinasjon ble utført med to- og tredimensjonale løsninger. Stressfunksjon ble beregnet etter 100 iterasjoner.

4.8 Klassifikasjon

For bedre å belyse ulike plantesamfunn i transektene, ble det utført en klassifikasjon av det totale vegetasjonsdatasettet ved hjelp av programmet TWINSPAN versjon 2.1a (Hill 1979b), bearbeidet av C.J.F. ter Braak og H.J.B. Birks i 1991. TWINSPAN (Two-Way Indicator Species Analysis) bygger på tilsvarende matematiske modeller som DCA, og de klassifiserte analyserutene kan lett visualiseres i DCAordinasjonsdiagrammer. Programmet har også den fordelen at det lager en vegetasjonstabell der ruter og arter settes sammen etter gradienten i materialet (se **tabell 1**). Den nedveide frekvensdatamatrisen ble brukt til klassifikasjonsanalysen, og ni "cutlevels" (0, 12, 23, 34, 45, 56, 67, 78, 89) tilsvarende smårutefrekvensen ble benyttet. Ellers ble standard TWINSPAN-opsjoner valgt.

Det ble også utført en hierarkisk agglomerativ klassifikasjon ved hjelp av prosedyren CLUSTER i programpakken PRIMER, jf. Carr (1990) og Clarke (1991). En sekundærmatrise ble laget ved hjelp av programmet CLUSTER, basert på Bray-Curtis ulikhetsmål, samt et dendrogram som viste Bray-Curtis likheter mellom de 100 analyserutene.

4.9 Diversitet

Diversitetsmål (D) er satt sammen av både artsrikdom (antall arter, S) og det relative mengdemålet mellom arter (E), der D = S x E. For å vise diversiteten av arter relatert til ordinasjonsresultater, har vi valgt Hills N1 diversitetsindeks (Hill 1973), som er avledet av Shannons klassiske diversitetsindeks (Shannon & Weaver 1949). Diversitetsdiagrammet er laget ved hjelp av CANODRAW (Smilauer 1992).

4.10 Direkte ordinasjon

Direkte gradientanalyser har blitt stadig mer brukt som et kraftig verktøy til å avdekke arters fordeling langs et utvalg spesifikke økologiske gradienter. Spesielt de multivariate metodene for kanonisk (canonical), også kalt styrt (constrained) ordinasjon har vist seg å være svært anvendelige.

For direkte gradientanalyser er den kanoniske ordinasjonsmetode "Canonical Correspondence Analysis", CCA (ter Braak 1986, 1987a) benyttet. CCA er inkorporet i CANOCO-pakken (ter Braak 1988, 1990). Nitten variabler fra kjemiske parametere i torv samt avstand fra analyseflate til vann-nivå ble brukt som utgangspunkt for CCAanalysene. De miljøvariabler som ble funnet statistisk signifikante i "forward selection" med 99 "unrestricted Monte Carlo permutation " tester, ble benyttet i en standard CCAordinasjon.

CCA gir et artsordinasjonsdiagram der artenes plassering er styrt etter valgte miljøvariabler. Miljøvariablene kan vises som biplott-piler i det samme ordinasjonsdiagrammet. Variabler med lange piler er sterkere korrelert med aksene og forklarer såldes mer av artsvariasjonen enn korte piler. Pilene viser retningen av maksimal endring av miljøvariabelen, og gjennomsnittet til miljøvariabelen ligger i origo av diagrammet. Miljøpilen kan således forlenges i motsatt retning for å vise hele dens rekkevidde. Artenes optima langs en miljøvariabel kan finnes ved horisontalprojeksjon av artspunktene mot pilen. Arter som blir projisert høgt oppe på miljøvariabelen, er generelt tilpasset høge verdier av denne miljøvariabelen, mens arter som projiseres langt nede på pilen har sitt optimum ved låge verdier av miljøvariabelen.

I materialet fra Havmyran har vi også vært interessert i å kvantifisere betydningen av miljøparameterene. Ved å dividere egenverdien til hver parameter på summen av egenverdiene for de kanoniske aksene (total inertia) i materialet, får vi uttrykt parameterenes forklaringsandel av vegetasjonsstrukturen i materialet.

En PCA "Principal component analysis" ble utført med miljøvariablene som "arter", og et "covariance biplot" diagram ble konstruert for å se hvilke miljøvariabler som er sterkest korrelerte. Miljøvariablene i biplott-diagrammet er representert ved piler. Piler som peker i samme retning, indikerer positivt korrelerte variabler. Piler som står vinkelrett på hverandre viser mangel på korrelasjon, mens piler som går i motsatt retning indikerer negativt korrelerte variabler.

4.11 Korrelasjonsanalyser

Korrelasjonsanalyser ble utført mellom miljøvariabler og DCA-akseverdier, og innbyrdes mellom miljøvariabler. Kun de miljøvariablene som var statistisk signifikante og forklarte mer enn 3 % av vegetasjonsstrukturen ble benyttet. I programpakken STATGRAPHICS (STSC Inc. 1991) ble den ikke-parametriske korrelasjonsanalysen basert på Kendalls τ benyttet (Conover 1980). A.R.E. (asymptopic relative efficiency) for denne testen er beskrevet hos Stuart (1956). Fenstad et al. (1977) fremhever bruken av Kendalls τ når den underliggende fordelingen er ukjent. Korrelasjonskoeffisienten som ble nyttet for å teste uavhengigheten mellom to tilfeldige variabler, X og Y, var følgende:

$$\tau = \frac{N_C - N_d}{n(n-1)/2}$$

der N_C angir antall konkordante par av observasjoner, N_d antall diskordante par, og n er antall observasjoner (Conover 1980). I den tosidige testen er nullhypotesen definert som følger:

H₀: X_i og Y_i er gjensidig uavhengige

Den alternative hypotesen, H₁, uttrykker at de ikke er gjensidig uavhengige.

5 Resultat

5.1 Vegetasjon

I de 100 analyserutene ble det registrert 93 arter/artsgrupper, derav 25 karplanter, 49 moser og 19 lav. Vedlegg 1 gir en oversikt over vitenskapelige og norske navn på planter, samt artsforkortelser benyttet i figurer og tabeller. Artenes smårutefrekvens og prosent dekning i 100 analyseruter er vist i tabeller i **vedlegg 2** og **3**. Den viktigste vegetasjonsgradienten er tue-høljegradienten. Denne gjenspeiler seg både i klassifikasjons- og ordinasjonsanalyser.

TWINSPAN-klassifikasjon

TWINSPAN-klassifikasjonen av frekvensdatasettet deler først analyserutene i to grupper: TWINSPAN-gruppe *0 med 52 ruter og TWINSPAN-gruppe *1 med 48 ruter (**figur 4**).

TWINSPAN-gruppe *0 (høljer) skilles ut ved indikatorartene sveltskovlmose (Odontoschisma sphagni), bjønnskjegg (Trichophorum cespitosum), dvergtorvmose (Sphagnum tenellum), vortetorvmose (S. papillosum), sveltfingermose (Kurzia pauciflora) og raudtorvmose (Sphagnum rubellum). I tillegg prefererer en rekke fuktighetskrevende arter denne TWINSPAN-gruppen, slike som smal - og rund soldogg (Drosera anglica, D. rotundifolia), rome (Narthecium ossifragum), klokkelyng (Erica tetralix), kysttorvmose (Sphagnum austinii), kjøtt-torvmose (S. magellanicum) og myr-/sveltglefsemose (Cephalozia lunulifolia/loitlesbergeri).

TWINSPAN-gruppe *1 (tuer) har furumose (*Pleurozium* schreben) som indikatorart. Dvergbjørk (*Betula nana*), krekling (*Empetrum nigrum*), ribbesigd (*Dicranum scoparium*), etasjemose (*Hylocomium splendens*), heigråmose (*Racomitrium lanuginosum*) og lav er viktige arter i denne gruppen.

Den første TWINSPAN-delingen representerer således et skille mellom høljer (*0) og tuer (*1). **Tabell 1** viser artenes og analyserutenes plassering i TWINSPAN-gruppene, i en gradient fra fuktighetskrevende til tørre plantesamfunn.

TWINSPAN-gruppe *00 (mykmatter) skilles ut ved indikatorartene myrsnutemose/torvdymose (*Cladopodiella/Gymnocolea*). Preferansearter er smal soldogg (*Drosera anglica*), dystarr (*Carex limosa*), vassnøkkemose (*Wamstorfia fluitans*), vasstorvmose (*Sphagnum cuspidatum*), kjøttorvmose (*S. magellanicum*), lurvtorvmose (*S. majus*) og vortetorvmose (*Sphagnum papillosum*). TWINSPAN-gruppe *00 representerer således hovedsakelig mykmattevegetasjon.

TWINSPAN-gruppe *01 (fastmatter) har lys reinlav (Cladonia arbuscula) og heigråmose (Racomitrium lanuginosum) med låg frekvens som indikatorarter. Preferansearter er dvergbjørk (Betula nana), røsslyng (Calluna vulgaris), krekling (Empetrum nigrum), flaskestarr (Carex rostrata), duskull (Eriophorum angustifolium), akssigd

Figur 4. TWINSPAN-klassifisering av 100 analyseruter basert på frekvens mengdemål av arter, med indikatorarter for hver TWINSPAN-gruppe (*). N = antall analyseruter, e = egenverdi i delingen. - TWINSPAN-classification of 100 sample plots based on species frequency, with indicator species of each TWINSPAN-sample group (*). N = number of sample plots, e = eigenvalue of the division.

(Dicranum leioneuron), furumose (Pleurozium schreben), torvnikke (Pohlia sphagnicola), kysttorvmose (Sphagnum austinii), raudmuslingmose (Mylia taylorii), torvflak (Calypogeia sphagnicola), sveltsaftmose (Riccardia latifrons), bakkefrynse (Ptilidium ciliare), grå reinlav (Cladonia rangiferina/stygia), kystreinlav (C. portentosa) og pigglav (Cladonia uncialis). Gruppen representerer således fastmattevegetasjon med noe tuepreg.

TWINSPAN-gruppe *10 (heigråmosetuer) skilles ut ved indikatorartene heigråmose (*Racomitrium lanuginosum*) og lys reinlav (*Cladonia arbuscula*), begge med svært høg frekvens. Preferansearter er syllav (*Cladonia gracilis*), grå reinlav (*C. rangiferina/stygia*), kystlav (*C. portentosa*), pigglav (*C. uncinalis*) og islandslav (*Cetraria islandica*), alle untatt islandslav med høg frekvens. Denne TWINSPANgruppen er representativ for tuer over berg og for svært høgvokste tuer på myr.

TWINSPAN-gruppe *11 (torvmosetuer) har myrmuslingmose (*Mylia taylorii*) som indikatorart. Gruppen består av analyseruter som ut fra artssammensetning er noe mer fuktighetskrevende og artsrik enn heigråmosetuene i gruppe *10. Preferansearter her er bl.a. blåbær (*Vaccinium myrtillus*), molte (*Rubus chamaemorus*), rund soldogg (*Drosera rotundifolia*), furutorvmose (*Sphagnum capillifoli* *um*), rusttorvmose (*S. fuscum*), filtbjørnemose (*Polytrichum strictum*), kysttorvmose (*Sphagnum austinii*) og sveltskovlmose (*Odontoshisma sphagni*). Gruppen representerer trolig tuer som har vokst opp over grunnvannstanden ved torvmosevekst, og som ikke er blitt så tørre at heigråmose og lav tar til å dominere.

Bray Curtis-klassifikasjon

Resultatet av Bray Curtis-klassifikasjonen av frekvensdatasettet er vist i et dendrogram (**figur 5**). Hoveddelingen i materialet går mellom 39 ruter med høljevegetasjon og 61 ruter med mer tuepreget vegetasjon. Bray Curtis-likheten mellom de to gruppene er kun ca. 0,35. Dette indikerer en relativt stor ulikhet i floristisk sammensetning mellom de to analyserute-gruppene. Ellers viser dendrogrammet at de analyserte rutene fanger opp en jevn variasjon i vegetasjonen og at det ikke er samlet "outlayere".

Tabell 1 . T utelatt TV sample plots	MNSPAN-klassifikasjonstabell av 100 analyseruter basert på artenes frekvensmål. Arter som opptrer i mindr VINSPAN-classification table of 100 sample plots based on species frequency abundance data. Species oc s are omitted.	e enn tre analyseruter, er ccuring in less than three
Analyse-	BBBBCAABBAAAAAAAAADDBBBDAAAABCABBDABAABDCDDABCCDDEDDEAAEEABBBDEABAAABDCABAAABAAAA	AABBAAACDDBBBBCBBCC
ruter	34452463365557588833445257773245516524412224322231331341121111222672212111311133	3126886111662216611
Sample	2112222121122221121212211112112112121212	21111212121212121212
plots	848648813174771034911390336344006693437079189916105896067466932189407489029721500	4611696880424149701
WARN FLU	21522	
SPH MAGE	19-991994264-3344-667	
CLA&GYMN	9999899948897821-164676-2212411	
C LIMOSA	3322	
DROS ANG	4-983221-11-221	
SPH COMP	24-2	
SPH CUSP	78642	
SPH MAJU	42-21	
SPH MOLL	3-22	
SPH SUBN	23463	
SPH PAPI	419268999999964863499437689972-3-2323222327-134333	
SPH TENE	99998999999999999999999999987438941172399874442624-84221	1
NART OSS	46979979-111199999-1689-2-83-7-4989-6999899981-93	
TRIC CES	789999999999999999999999999999999999999	13
CEPH BIC	11-4113862273131211-411	2
ODON SPH	-6976278298999999999999999999999999999999	
RICA LAT	2117213221-11-836338-2-3-14343-2-1-643-42111	2-2
ER AN AN		
LOES BAD		2222222
CERIC TEI	3-2/114/8/3-2/2/2/2/2/3/-2/3/2/2/2/2/2/2/2/2/	8212
CEIR ISL	-231 - 3 13 - 9 23 / 01 - 3 - 2 370 / 040 0 020 - / 4 - 1 370 21 21	
CERU CON		
DICR LET		
KIIBA DVII		6-48-32-43
CEPH/LUN	39979836934473/1799697948-22949976683489996-4-323-63-2	
SPH RUBE	279989379899999997639999999999999976668989397-3	99788973
SPH AUST		149-83
C PAUCIE	4 - 8 19 39 - 769 - 164 362 - 1 - 161	
DROS ROT	3113-89869469713929489498636499946-41324436614121-1-22	46434612-672
VA OX.MI	11	7
CALY SPH	1-113-111111-31-412-61372-22-42	
POLY STR	24	3926
		26 (2206002602007

 $\begin{array}{c} 1 \\ 1 \\ 2 \\ 2 \\ -$

-----1-68-1----9937-99--

POLY STR ANDR POL PING VUL MYLI ANO PTIL CIL DICR BER SPH FUSC C LASIOC PHRA AUS C ROSTRA CLAD STE MYLI TAY CLAD SQU COEL ACU CALL VUL

ERIO VAG RUBU CHM CLAD UNC CLAD/RAN

RACO LAN CLAD ARB CLAD POR BETU NAN CEPL SPI LOPH VEN CLAD GRI EMPE NIG PLEU SCH ARCT ALP HYPN JUT VACC VIT HYPG PHY DICR SCP VACC MYR

HYLO SPL SPH CAPI CLAD MER POHL SPH

TWINSPAN grupper/ -groups

Figur 5. Dendrogram som viser Bay-Curtis likhet mellom 100 analyseruter basert på frekvensdata. -Dendrogram showing Bray-Curtis similarities between 100 sample plots, based on species frequency data.

Tabell 2. DCA-ordinasjonsresultater av 100 analyseruter basert på frekvens- og dekningsmål. Egenskaper ved ordinasjonsaksene. Ti = total artsvariasjon, e = egenverdi, SD = gradientlengde målt i SD enheter, e/Ti = aksens andel av forklart artsvariasjon, Se_n/Ti = de n første aksenes andel av forklart artsvarisajon. - DCA ordination results of 100 samples based on species frequency and percentage cover abundance data. Characteristics of the ordination axes. Ti = total inertia, e = eigenvalue, SD = gradient length in SD units, e/Ti = variation of the species explained by the axis, Se_n/Ti = variation of the species explained by the first n axes.

Akse - axis	1	2	3	4	Ті
		<u></u>			
DCA (frekvens) -					
DCA (frequency)					2,23
е	0,427	0.169	0.096	0.061	
SD	3,570	2,499	1,797	1,424	
e/Ti (%)	19,1	7,6	3,3	2,8	
Se _n /Ti (%)	19,1	26,7	31,0	33,8	
DCA (prosent) -					
DCA					2,47
(percentage)					
e	0,425	0,193	0,104	0,085	
SD	3,785	2,199	2,097	1,698	
e/Ti (%)	17,3	7,8	4,2	3,5	
Se _n /Ti (%)	17,3	25,1	29,3	32,8	

DCA-ordinasjon

DCA-ordinasjonen av frekvensdatasettet og prosentdeknings-datasettet gav nokså like resultat (**tabell 2**). Den totale artsvariasjon (Ti) og gradientlengden på DCA-akse 1 er noe mindre for frekvensdatene enn for prosentdataene. Gradientlengden på DCA-akse 1 er henholdsvis 3,6 og 3,8 SD for de to datasettene. Imidlertid er gradientlengden på DCA-akse 2 større ved bruk av frekvensdata enn ved prosent dekning, henholdsvis 2,5 og 2,2 SD. De noe ulike gradientlengdene mellom de to datasettene vises også i ordinasjonsdiagrammene, der akse 2 i tillegg er snudd fra det ene settet til det andre (**figurene 6-9**).

Ruteordinasjons-diagrammene (figur 6 og 7) viser de 100 analyserutenes posisjoner som veiet middel av arts-"scorene" langs de to viktigste DCA-aksene. Ruter i samme transekt er gitt felles symbol. Artsordinasjons-diagrammene, der posisjonene til artenes sentroider er angitt, er vist i figur 8 og 9. Arter som er plassert til venstre i artsdiagrammet, karakteriserer de analyseruter som er plassert til venstre i ruteordinasjons-diagrammet. Tilsvarende vil de arter som er plassert øverst/nederst til høgre i artsordinasjonen karakterisere de ruter som er plassert øverst/nederst til høgre i ruteordinasjonen.

Artsordinasjons-diagrammene viser en gradient langs første DCA-akse fra lyngpreget tuevegetasjon til fuktighetskrevende høljevegetasjon. Typiske arter i tuene er blåbær (Vaccinium myrtillus), blokkebær (V.uliginosum), rypebær (Arctostaphylos alpina), melbær (A. uva-ursi) og dvergbjørk (Betula nana), og i høljene dystarr (Carex limosa), vasstorvmose (Sphagnum cuspidatum), stivtorvmose (S. compactum), bjørnetorvmose (S. lindbergii) og vassnøkkemose (Wamstorfia fluitans). Artsordinasjonen viser også at minerotrofe arter som bukkeblad (Menyanthes trifoliata), duskull (Eriophorum angustifolium), flaskestarr (Carex rostrata), trådstarr (C. lasiocarpa) og takrør (Phragmites australis) er samlet høgt på akse 1 og at de er relativt avgrenset fra mindre næringskrevende arter langs akse 2.

Figurene 10-14 viser posisjonene til analyserutene for hvert enkelt transekt i den opprinnelige DCA-ordinasjonen av frekvensdatasettet (**figur 6**). Transektene A og B dekker begge hele tue-høljegradienten, mens transekt C og D mangler ytterpunktene. Transekt E, som er et analysefelt på høgvokste heigråmosetuer med erosjonsflater rundt, er samlet lågt på akse 1 og høgt på akse 2.

Figur 15 viser TWINSPAN-gruppenes plassering i DCAruteordinasjons-diagrammet. TWINSPAN-gruppe *00 (mykmattevegetasjon) faller klart ut med høge rutescorer på akse 1, mens gruppe *01 (fastmattevegetasjon), plasseres midt på akse 1. Både TWINSPAN-gruppe *10 (heigråmosetuer) og gruppe *11 (torvmosedominerte tuer) faller ut lågt på akse 1, mens de er atskilt langs akse 2.

Figur 6. DCA-ruteordinasjon av 100 analyseruter basert på frekvens data, aksene 1 og 2. DCA-sample plot ordination of 100 sample plots, based on species frequency abundance data, axes 1 and 2.

Figur 7. DCA-ruteordinasjon av 100 analyseruter basert på prosent dekning av arter, aksene 1 og 2. DCAsample plot ordination of 100 sample plots, based on species percentage-cover abundance data, axes 1 and 2.

							-	
		0						
		·						
	POLY COM	œ						
		т						
	ARCTUVA							
	ALCIOTA							
				CLAD COC				
	a.	AD GRI			ER AN AN	LOES BAD		
						MENY TRI		
						FILM AUS		
			CLADRAN	COEL ACU	C LASIO			
				CDIOICA		NART OFF		
			BACO LAN	CLADSOU	C ROSTRA	NARI USS		
		CLADPO	DR CLADA	RB MY	LITAY ERIC	TET		
			ANAS MIN		CLAD SUI	2		
				œ	TR ISL			
PARM SUL	LOPH	VEN			PING VUL	TRIC CES	l	
					CEPH BI	с		
			CATT 100			ODON SPH	WARN FLU	6 DEJ 1 TUD
			CALL VUL	PTIL CIL	KU	ODON SPH RZ PAU SPH	WARN FLU I PAPI SPH PUL	SPH LINB C
			CALL VUL	PTIL CEL ERIO VAG ANDI	KU KPOL	ODON SPH RZ PAU SPH SPH 1	WARN FLU I PAPI SPH PULI TENE CLIMOSA SP SPH SUBN	SPH LINB C H MAJU
			CALL VUL	PTIL CEL ERIO VAG ANDI	KU R POL SPI	ODON SPH RZ PAU SPH SPH 1 SPH MAGE L RUBE	WARN FLU I PAPI SPH PULI TENE CLIMOSA SP SPH SUBN SPH (CLAARGYMON CLIOR	SPH LINB C H MAJU COMP
LOPH EXC	BET	UNAN	CALL VUL	PTIL CE. ERIO VAG ANDI	KU R POL ; C PAUCIF	odon SPH SPH SPH SPH SPH MAGE RUBE DICR LEI	WARN FLU I PAPI SPH PULI TENE CLIMOSA SP SPH SUBN SPH O CLARGYMN SPH O OCHE FRI SPH CUSP DROS ANG	SPH LINB C H MAJU COMP
LOPH EXC. BARB LYC	BET HYPN JUT EMPE NI	UNAN G PLEUSOH	CALL VUL RHYT	PTIL CIL ERIO VAG ANDI LOR CEP	R POL SPI C PAUCIF H/LUN SP	odon Sph BZ PAU SPH Sph MAGE I RUBE DICR LEI H AUST	WARN FLU IPAPI SPH PULL TENE CLIMOSA SP SPH SUBN SPH (CLARGYAN SPH (OCHR FRI SPH CUSP DROS ANG	SPH LINB C H MAJU COMP
LOPH EXC BARB LYC	BET HYPN JUT EMPE NI AI	'U NAN G PLEU SOH JLA PAL	CALL VUL RHYT	PTIL CIL ERIO VAG ANDI LOR CEP CLAD STE	R POL SPH C PAUCIF H/LUN SP I/CR BER DROS	ODON SPH IRZ PAU SPH SPH MAGE I RUBB DICR LEI H AUST ROT	WARN FLU I PAPI SPH PUL TENE CLIMOSA SP SPH SUBN SPH CLARGYMN SPH OCHR FRI SPH CUSP DROS ANG	SPH LINB C H MAJU COMP
LOPH EXC BARB LYC	HYPN JUT EMPE NIG AU SPHA (UNAN G PLEUSON JLA PAL LO	CALL VUL RHYT	PTIL CEL ERIO VAG ANDI LOR CEP CLAD STE	RU SPI C PAUCIF HULUN SP HCR BER DROS RIC	ODON SPH IRZ PAU SPH SPH MAGE I RUBE DICR LEI H AUST ROT A LAT	WARN FLU IPAPI SPH FUL TENE CLIMOSA SP SPH SUBN SPH G CLAREGYDN OCHR FRI SPH CUSP DROS ANG	SPH LINB H MAJU COMP
LOPH EXEARB LYC	HYPN JUT EMPE NI AI SPHA (ARCT	UNAN G MEUSOH JA PAL LO ALP	CALL VUL RHYT	PTIL CEL ERIO VAG ANDI LOR CEP CLAD STE	R POL SPI C PAUCEP HALUN SE NCR BER DROS RIC	ODON SPH IRZ PAU SPH SPH MAGE I RUBE DICR LET H AUST ROT A LAT	WARN FLU IPAPI SPH FUL TENE CLIMOSA SP SPH SUBN SPH CLARE SPH CUSP OCHR FRI SPH CUSP DROS ANG +5	сян цамв н мати сомр
LOPH EXCARB LYC	HYPN JUT EMPE NI SPHA (ARCT DICR SCP BABB EUN	UNAN 9 PLEUSOH JLA PAL BLO ALP	CALL VUL RHYT CEPL SPI	PTIL CE. ERIO VAG ANDI LOR CEP CLAD STE	EU SPA C PAUCIF H/LUN SP H/CR BER DROS RIC LIANO EPH CON	ODON SPH IRZ PAU SPH SPH MAGE I RUBE I RUBE DICR LET H AUST ROT A LAT	WARN FLU IPAM SHI PUL TENE CLAROSA SH SHI SUN CLAROYAN SHI CLAROYAN SHO CLAROYAN SHO CLAROYAN SHO CLAROYAN SHO CLAROYAN SHO CLAROYAN SHO CLAROYAN SHO CLAROYAN SHI CLAROYAN	с ^{енцыв} н мал сомр
LOPH EXC ARB LYC - 2.5 KYPO FRY HYLO SPL	HYPN JUT EMPE NIG SPHA (ARCT DICE SCP BARB KUN	UNAN G PLEUSOH JLA PAL JLO ALP	CALL VUL RHYT CEPL SPI	PTIL CE. ERIO VAG ANDI LOR CEP CLAD STE RUBU CHAR CALVE	EU R POL SPA C PAUCEP H/LUN SP H/CR BER DROS RIC LI ANO EPH CON	ODON SPH IRZ PAU SPH SPH 35 SPH MAGE I RUBE DICR LEI H AUST ROT A LAT	WARN FLU IPAM SHPTUL TENE CLANCIA SP SPH SUEN SPH SUEN CLARCINN SPH CLARCINN SPH OCHR FEI DROS ANG +5	ан цана н мал . 5
LOPH EX <u>C</u> ARB LYC -2.5 Курарну Кулорну	HYPN JUT EMPE NI ARCT DICR SCP BARB KUN	UNAN G PLEUSOH JLA PAL ILO ALP	CALL VUL RHYT CEPL SPI	PTIL CIL ERIO VAG ANDI LOR CEP CLAD STE RUBU CIDE CALY SI DIC	EU R POL SPA C PAUCEP H/LUN SP H/CR BER DROS RIC LI ANO EPH CON PH R GRO	ODON SPH IRZ PAU SPH SPH 35 SPH MAGE I RUBE DICR LEI H AUST ROT A LAT	WARN FLU TENE CLINGSA SH FUL SH SUN CLARGYAN SH CLARGYAN SH COCHE FEI SH CUSP DROS ANG +5	арнала на мали • 5
LOPH EXC - 2 . 5 КУРО РКУ НУLO SPL	HYPN JUT BET EMPE NIA SPHA (ARCT DICE SCP BABB EUN CLAD SUL	UNAN 9 PLEUSOH JLA PAL ELO ALP	CALL VUL RHYT CEPL SPI POHL SS	PTIL CIL ERIO VAG ANDI LOR CEP CLAD STE RUBU CHAE CALY SI DIC MI SPH I	EU R POL SPA C PAUCEP H/LUN SP H/CR BER DROS RIC LI ANO EPH CON PH R CORO TUSC	ODON SPH IRZ PAU SPH SPH MAGE I RUBE DICR LEI H AUST ROT A LAT	WARN FLU TENE CLIMOSA SPH FUL SPH SUB CLIMOSA SPH CLAROYAN SPH CLAROYAN SPH CLAROYAN SPH CLAROYAN SPH DROS ANG + 5	анцияв н мали . 5
LOPH EXC - 2 . 5 HYPO PHY HYLO SPL	HYPN JJT BET EMPE NI AI SPHA C ARCT DICE SCP BABB KUN CLAD SUL ND COR	UNAN 9 PLEUSOH JLA PAL ELO ALP	CALL VUL RHYT CEPL SPI POHL SS	PTEL CEL ERIO VAG ANDI LOR CEP CLAD STE CLAD STE MYJ RUBU CHAR DIC DIC	EU R POL SPI C PAUCIF H/LUN SP NCR BER DROS RIC LI ANO EPH CON FH R GRO FUSC	ODON SPH IRZ PAU SPH SPH MAGE I RUBE DICR LEI H AUST ROT A LAT	WARN FLU TEAM SHI PTUL TENE CLIMOSA SH SHI SHIN SHI CLAROYAN SHI CLAROYAN SHI CLAROYAN SHI DROS AND H S	арн цала н малл
LOPH EXC. - 2 . 5 KYPO PHY KYLO SPL CLA	HYPN JUT BARPE NI AI SPHA C ARCT DICR SCP BARB KUN CLAD SUL VD COR CALY NEE	UNAN g PLEUSOH JLAPAL EO ALP	CALL VUL RHYT CEPL SPI POHL SP	PTL.CL ERIO VAG ANDI LOR CEP CLAD STE CLAD STE MY1 RUBU CHA CLY SI DICI CHY SI SPH J	EU R POL SPAUCEP HULIN SP PICR BER DROS RICC LI ANO EPH CON PH R GRO PUSC	ODON SPH IRZ PAU SPH SPH MAGE I RUBE DICR LEI H AUST ROT A LAT	WARN FLU IPAM SHI PUL TENE CLANGA SH SHI SUN CLARGYAN SHI CLARGYAN SHI OCHE FPU SHI CUSP DROS AND +5	анныла нылл сомар
LOPH EXC - 2 . 5 KYPO PHY HYLO SPL CLA VACC MYR	HYPN JUT BARF NI SPHAC AL SPHAC AR AR DICR SCP BARB KUN CLAD SUL CALY NEE SPH CAFI	U NAN G PLEU SOH JLA FAL ILO ALP CLAD MEE	CALL VUL RHYT CEPL SP1 POHL SP	PTL.CL ERIO VAG ANDI LOR CEP CLAD STE CLAD STE CALY SI DIC CLY SI DIC CLY SI DIC VA OX.MI	EU R POL SPI C PAUGP HALUN SP HCR DER DROS ENC LI ANO EPH CON PH R GRO 7USC	ODONSPHI IRZ PAU SPHI SPHI MAGE SPHI MAGE ISPHI MAGE ISPHI MAGE IDICE LEF MAUST ROT A LAT	WARN FLU IPAM SHPUL TENE CLARGEA SH CLARGYAN SH CLARGYAN SH OCHE FL DROS AND +5	анн цала н малт . 5
LOPH EXC -2.5 KYPO PHY HYLO SHL VACC MYR	HYPN JUT BAFF NI SPHAC AL SPHAC AR ARD SUL CLAD SUL CLAD SUL CALY NEE SPH CAPI	UNAN g FLEUSOH JLA FAL LO ALP CLAD MEE	CALL VUL RHYT CEPL SP POHL SE	PTIL CL ERIO VAG ANDI LOR CEP CLAD STE RUBU CHÉ KUBU CHÉ MY N SPH I VA OXIMI	EU SP C PAUGP HAUN SE HAUN SE IGE DER DROS EIC LIANO EPH CON PH G GEO USC	ODON SPH IRZ PAU SPH SPH SPH MACE I RUBE I RUBE DICR LEI H AUST ROT A LAT	WARN FLU TEAM SHI FUL SHI SULASA SH SHI SHI CLARGYAN SHI OCHE FEL SHI CUSP DROS AND +5	siph Lune H Mari Souder
LOPH EXC -2.5 KYPO PHY KYLO SPL VACC MYR	HYPN JUT BET EMPE NI SPHAC ARCT DICR SCP BARB KUN CLAD SUL CLAD SUL ND COR CALY NEE SPH CAPI	UNAN 0 FLEU SCH ILA PAL ELO ALP CLAD MEE	CALL VUL RHYT CEPL SPI POHL SP	PTL.CL ERIO VAG ANDI LOR CEP CLAD STE CLAD STE CLUY SI DICI CHI SPH I VA OX.MI	TU SP SP C PAUCIP HAUN SE HAUN SE HAUN EPH CON PH C R GRO TUSC	ODON SPH IRZ PAU SPH SPH SOFT I RUBE I RUBE I RUBE I RUBE I RUST ROT A LAT	WARN FLU TEAM SHI FUL SHI SULA CLARGYAN SHI CLARGYAN SHI CLARGYAN SHI CLARGYAN SHI CLARGYAN DROS ANG +5	зин цияв н мал
LOPH EXC. - 2 . 5 НУРО РНУ НУТО SPL VACC MYR	HYPN JUT EMPE NI ARCT DICR SCP BABB KUN CLAD SUL CLAD SUL ND COR CALY NEE SPH CAPI	UNAN 0 FIEU SCH JLA FAL ILO ALP CLAD MEN	CALL VUL RHYT CEPL SPI POHL SP	PTL.CL ERIO VAG ANDI LOR CEP CLAD STE CLAD STE CALY SI CALY SI CALY SI CALY SI CALY SI CALY SI CALY SI	TU SPI C PAUGP HAUM SPICE BER DROS EICE BER DROS EICE LIANO EPH CON PH R CEO VISC	ODON SPH IRZ PAU SPH SPH SOFT I RUBE I RUBE DICR LET H AUST ROT A LAT	WARN FLU TEAM SHI FUL TEAM CLARGA SH SHI SUM CLARGYAN SHI CLARGYAN SHI CLARGYAN SHI DROS ANG +5	арн цала н малт
LOPH EXC - 2 . 5 HYPO HYP HYLO SPL VACC MYR	HYPN JJT BET EMPE NA ARCT DICE SCP BABB KUN CLAD SUL ND COR CALY NEE SPH CAPI	UNAN 0 MEUSOH JA FAL ILO ALP CLAD MES	CALL VUL RHYT CEPL SPI POHL SS	PTL.CL ERIO VAG ANDI LOR CEP CLAD STE CLAD STE CLAD STE DIC CALY SI PH SPH J VA OX.MI	EU SPI C PAUGE C PAUGE C PAUGE SPI CR DER DROS HI EPH CON PH R GRO R GRO	ODON SPH IRZ PAU SPH SPH JAGE IRUBE IRUBE DICR LEI H AUST ROT A LAT	WARN FLU FAM SHI PUL TENE CLIMOSA SH SHI SHI CLAROYAN SHI CLAROYAN SHI CLAROYAN SHI DROS AND HOS AND	анн цала н малл
LOPH EXC - 2 . 5 KYPO PHY HYLO SHL CLA VACC MYR	HYPN JUT EMPE NI SPHA CA ARCT DICR SCP BARB KUN CLAD SUL CALY NEE SPH CAPI	UNAN g PLEUSOH JLA FAL EO ALP CLAD MEH	CALL VUL RHYT CEPL SPI POHL SP	PTL.CL ERIO VAG ANDI LOR CEP CLAD ST CLAD ST CALY SI DIC CALY SI DIC CALY SI DIC CALY SI DIC CALY SI DIC	EU R POL SPI C PAUGE HULIN SP HCR BER DROS HULINO EPH CON PH R GRO RUSC	ODON SPH IRZ PAU SPH SPH MAGE IRUBE DICE LEI H AUST A LAT	WARN FLU IPAM SHI PUL TENE CLIMOSA SH CLAROYAN SHI CLAROYAN SHI OCHERFEL SHI CUSP DROS AND +5	анн цала н малл
LOPH EXC - 2.5 KYPO PRY HYLO SRL CLA VACC MYR	HYPN JUT BAFE NI SPHA C AL SPHA C AR AR AL DICR SCP BARB EUN CLAD SUL CALY NEE SPH CAFI	UNAN g FLEUSCH JLA FAL LO ALP CLAD MEE	CALL VUL RHYT CEPL SFI POHL SE	PTIL CL ERIO VAG ANDI LOR CEP CLAD STE RUBU CHE MYT RUBU CHE MYT VA OX.MI	EU SP C PAUGP HILUN SE IGE DER DROS EIC LIANO EPH CON PH G GEO USC	ODON SPH IRZ PAU SPH SPH SPH IRUBE IRUBE IRUBE IRUBE IRUBE IRU ROT ALAT	WARN FLU TEAM SHI FUL SHI SUL CLARGYAN SHI CLARGYAN SHI CLARGYAN SHI CLARGYAN SHI COCHE FEL SHICUSP DROS ANG	• 5
LOPH EXCARB LYC -2.5 KYPO PHY HYLO SHL VACC MYR	HYPN JUT BET EMPE NI SPHAC ALL SPHAC ALL ALL ALL ALL ALL ALL ALL ALL ALL A	UNAN 0 FLEUSCH JLA FAL RO ALP CLAD MEE	CALL VUL RHYT CEPL SPI POKL SP	PTL-CL ERIO VAG ANDI LOR CEP CLAD STE CLAD STE CALY SI DIC CHY SPH 1 VA OX.MI	EU SP SP C PAUCEP HAZUN SS HAZUN SE RUCE LIANO EPH CON PH C RORO RUSC	ODON SPH IRZ PAU SPH SPH SOFT I RUBE I ROT A LAT	WARN FLU TEAM SHI FUL SHI SUL CLARGYAN SHI CLARGYAN SHI CLARGYAN SHI CLARGYAN SHI CLARGYAN SHI CLARGYAN SHI COCHE FEI SHICLSP DROS ANG	анн цине н малл . 5
LOPH EXC -2.5 KYPO PHY KYLO SPL VACC MYR	HYPN JJT BET EMPE NI ARCT DICR SCP BARB KUN CLAD SUL CLAD SUL SO COR CALY NEE SPH CAPI	UNAN 0 FLEUSCH ILA FAL ELO ALP CLAD MEE	CALL VUL RHYT CEPL SPI POHL SP	PTL-CL ERIO VAG ANDI LOR CEP CLAD STE CLAD STE CALY SI CALY SI CALY SI VA OX.MI	TU SPI C PAUGP HAUN SE HAUN SE HAUN EIC LIANO EPH CON PH C Reco TUSC	ODON SPH IRZ PAU SPH SPH SOF I RUBE I RUBE DICR LET H AUST ROT A LAT	WARN FLU TEAM SHI FUL TEAM CLANGA SH SHI SUM CLANGYAN SHI CLANGYAN SHI CLANGYAN SHI CLANGYAN DROS ANG +5	• 5
LOPH EXC - 2 . 5 KYPO FHY HYLO SPL CLA VACC MYR	HYPN JUT EMPE NI SPHA CA ARCT DICR SCP BABB KUN CLAD SUL CAD SUL CALY NEE SPH CAPI	UNAN 0 FIEU SCH JLA FAL EO ALP CLAD MEE	CALL VUL RHYT CEPL SPI POHL SS	PTIL CIL ERIO VAG ANDI LOR CEP CLAD STE CALY SI DIC CALY SI HI SPH J VA OX.MI	EU SPI C PAUGE HAUN SS HCR BER DROS HCR DER DROS LIANO EPH CON H R CRO USC	ODON SPH IRZ PAU SPH SPH ANGE IRUDE IRUDE DICR LET HAUST ROT A LAT	WARN FLU IPAM SHI PUL TENE CLIMOSA SH SHI SUN CLAROYAN SHI CLAROYAN SHI CLAROYAN SHI DROS AND H DROS AND	• 5
LOPH EXC - 2.5 KYPO PHY HYLO SHL CLA VACC MYR	HYPN JUT EMPE NI SPHAC ARCT DICR SCP BARB KUN CLAD SUL CALY NEE SPH CAPI	UNAN g FLEUSCH JLA FAL EO ALP CLAD MEH	CALL VUL RHYT CEPL SPI POHL SP	PTL.CL ERIO VAG ANDI LOR CEP CLAD SE CALY SI RUBU CADE CALY SI DIC CALY SI PH SPH I VA OX.MI	EU SPI C PAUGE IC PAU	ODON SPH IRZ PAU SPH SPH JAGE IRUBE IRUBE DICALE HAUST ROT A LAT	WARN FLU IPAM SHI PUL TENE CLANCAS SHI PUL SHI SUN SHI CLARCYNN SHI CLARCYNN SHI CLARCYNN SHI DROS AND H CLARCYNN SHI CLARCYNN SHI CLARCYNN SHI CLARCYNN SHI CLARCYNN SHI CLARCYNN SHI CLARCYNN SHI CLARCYNN SHI CLARCYNN SH CLARCYNN SH CARCYNN SH CARCYN SH CARCYNN SH CARCYNN SH CARCYNN SH CARCYNN SH CARCYNN SH CARCYNN SH CARCYN SH CARCYNN SH CARCYN SH CARC	• 5
LOPH EXC - 2.5 KYPO PRY HYLO SR. CLA VACC MYR	HYPN JUT BAFE NI SPHA (AL SPHA (AR AR AL AL AL CALY NEE SPH CAFI	UNAN 0 FLEUSCH JLA FAL LO CLAD MES	CALL VUL RHYT CEPL SFI POHL SE	PTIL CL ERIO VAG ANDI LOR CEP CLAD ST RUBU CADE CLY SI PH SPH I VA OX.MI	EU SP C PAUCEP HALUN SE ICE DER DROS ELC LIANO EPH CON PH R GRO RUSC	ODON SPH IRZ PAU SPH SPH SPH IRUBE I	WARN FLU TRAM SHI FUL SHI SUL CLARGYAN SHI CLARGYAN SHI CLARGYAN SHI CLARGYAN SHI CLARGYAN SHI COCHE FEI SHICUSP DROS AND +5	• 5
LOPH EXCARB LYC -2.5 KYPO FRY HYLO SHL VACC MYR	HYPN JUT BAPE NI SPHAC ALL SPHAC ALL ALL ALL ALL CALS SUL ALL CALY NEE SPH CAPI	UNAN 0 HEUSCH JLAFAL 20 CLADMES CLADMES	CALL VUL RHYT CEPL SPI POHL SP	PTL-CL ERIO VAG ANDI LOR CEP CLAD SE CLAD SE CALY SI DIC CHY SPH I VA OX.MI	EU SP SP C PAUCEP HAZUN SS REC VIANO EPH CON PH C Rec VISC	ODON SPH IRZ PAU SPH SPH S SPH S RUGE I RUGE I RUGE I RUGE I RUGE I RUGE A LAT	WARN FLU TRAM SHI FUL TENE CLIMOSA SH SHI SHI CLARGYAN SHI CLARGYAN SHI CLARGYAN SHI CLARGYAN SHI CLARGYAN SHI COCHE FEI SHCUSP DROS ANG	• 5
LOPH EXC. ARB LYC -2.5 KYPO PHY KYLO SPL VACC MYR	HYPN JJT EMPE NI AI SPHAC DICR SCP BABB KUN CLAD SUL CALY NEE SPH CAPI	UNAN 0 FLEUSCH ILA FAL LO ALP CLAD MEE 0	CALL VUL RHYT CEPL SPI POHL SP	PTIL CL ERIO VAG ANDI LOR CEP CLAD STE CLUY SI CLUY SI CLUY SI CLUY SI VA OX.MI	TU SP SP C PAUGP HUIN SC DER DROS EIC LIANO EPH CON PH C R GEO 7USC	ODON SPH IRZ PAU SPH SPH SOM IR USE IR USE I	WARN FLU TRAM SHI FUL TENE CLIMOSA SH SHI SUN CLAROYAN SHI CLAROYAN SHI CLAROYAN SHI CLAROYAN SHI CLAROYAN SHO CORR FEI SHICUSP DROS AND + 5	• 5
LOPH EXCARB LYC - 2 . 5 KYPO FHY HYLO SPL CLA VACC MYR	HYPN JUT BAMP NI SPHA CA ARCT DICR SCP BARB KUN CLAD SUL CALY NEE SPH CAPI CEPL DIV CLAD CAN	UNAN 0 MEUSCH ILA PAL LO CLAD MES 0.	CALL VUL RHYT CEPL SPI POHL SP	PTL-CL ERIO VAG ANDI LOR CEP CLAD STE CLAD STE CALY SI CALY SI CALY SI VA OX.MI	TU SPI C PAUGP HAUN SP JOR BER DROS LIANO EPH CON PH R (BO) RUSC	ODON SPH IRZ PAU SPH SPH SOME IRUDE IRUDE DICR LET HAUST ROT A LAT	WARN FLU IPAM SHI FUL TENE CLIMOSA SH SHI SUM CLAROYAN SHI CLAROYAN SHI CLAROYAN SHI CLAROYAN SHI CLAROYAN SHI CLAROYAN SHO DROS AND +5	• 5
LOPH EXCARB LYC - 2.5 KYPO FHY HYLO SHL CLA VACC MYR	HYPN JUT EMPE NI SPHAC AR SPHAC AR AR AR CALD SUL CALD SUL CALY NEE SPH CAFI CEPL DIV CLAD CAN	UNAN o FLEUSCH ILA FAL ELO CLAD MEE O · I I	CALL VUL RHYT CEPL SPI POHL SP	PTL-CL ERIO VAG ANDI LOR CEP CLAD ST RUEU CAS NYI RUEU CAS NYI VA OX.MI	EU SPI C PAUGE HAUN SP HCR DER DROS LIANO EPH CON H R GRO AUSC	ODON SPH IRZ PAU SPH SPH JAGE IRUBE DICR LE MAUST ROT A LAT	WARN FLU IPAM SHI FUL SHI SUL CLARGYAN SHI CLARGYAN SHI CLARGYAN SHI CLARGYAN SHI CLARGYAN SHI CORR FEL SS ANG + 5	• 5

Figur 8. DCA-artsordinasjon av frekvensdata fra 100 analyseruter, aksene 1 og 2. - DCA-species ordination of frequency abundance data from 100 sample plots, axes 1 and 2.

-

Figur 9. DCA-artsordinasjon av prosent dekningsdata fra 100 analyseruter, aksene 1 og 2. - DCA-species ordination of percentage cover abundance data from 100 sample plots, axes 1 and 2.

Figur 10-14. Analyserutenes posisjoner for hvert enkelt transekt (A-E) i en DCA-ordinasjon av hele frekvensdatasettet, aksene 1 og 2. The position of the sample plots from each individual transect (A-E) in a DCA-ordination of all sample plots based on species frequency abundance data, axes 1 and 2.

Figur 15. DCA-ruteordinasjon av frekvensdatasettet med analyserutenes TWINSPAN-gruppetilhøring, aksene 1 og 2. - DCA-sample plot ordination of species frequency data with TWINSPAN-group membership, axes 1 og 2.

Artenes mengdefordeling i DCA-ordinasjonen

Figurene 16-66 viser arter som forekommer i 8 % av analyserutene eller mer, plottet inn i de respektive ruters posisjoner i ruteordinasjons-diagrammet, basert på frekvensdata. Fordelingen av arter i ordinasjonsdiagrammet, både i forhold til mengde og økologisk amplityde, gir informasjon om artenes økologiske preferanser og krav. Arter som fordeler seg langs hele 1. DCA-akse viser stor økologiske amplityde. Eksempler her er røsslyng (*Calluna vulgaris*), kvitlyng (*Andromeda polifolia*), torvull (*Eriophorum vaginatum*) og til dels pigglav (*Cladonia uncialis*).

Arter som er knyttet til høge akse 1 verdier, dvs. avgrenset til mykmatter, er smalsoldogg (Drosera anglica), vasstorvmose (Sphagnum cuspidatum), kjøtt-torvmose (S. magellanicum) og myrsnutemose/torvdymose (Cladopodiella fluitans/Gymnocolea inflata). Klokkelyng (Erica tetralix), duskull (Eriophorum angustifolium ssp. angustifolium), flaskestarr (*Carex rostrata*), sveltstarr (*C. pauciflora*), torvnikke (*Pohlia sphagnicola*), kysttorvmose (*Sphagnum austinii*), rusttorvmose (*S. fuscum*) og raudmuslingmose (*Mylia taylor*) er mere knyttet til middlere akse 1 verdier, på fastmatter. Arter avgrenset lågt på akse 1, dvs. tueprefererende arter, er krekling (*Empetrum nigrum*), ribbesigd (*Dicranum scoparium*), etasjemose (*Hylocomium splendens*), heiflette (*Hypnum jutlandicum*), furutorvmose (*Sphagnum capillifolium*) og syllav (*Cladonia gracilis*).

Noen arter vokser bare på tuer og fastmatter, f.eks. heigråmose (*Racomitrium lanuginosum*) og grå reinlav/svartfotreinlav (*Cladonia rangiferina/stygia*), mens andre vokser bare på mykmatter og fastmatter, f. eks. rundsoldogg (*Drosera rotundifolia*).

Figurene 16-66. DCA-ordinasjonsdiagrammer av 100 analyseruter, aksene 1 og 2, med nedveide smårutefrekvens-verdier for hver art som forekommer i minst 8 % av analyserutene. Verdiene er plottet inn i analyserutenes posisjoner som sirkler. Arealet av sirkelen er proporsjonal med mengden av arten. Se vedlegg 1 for forkortelser av artsnavn. - DCA-ordination diagrams of 100 sample plots, axes 1 and 2, with downweighted frequency values of species occuring in at least 8 % of the sample plots. The species values are plotted on to the sample plot positions as circles. Area of circle is proportional to the species abundance value. See appendix 1 for species abbreviations.

,

nina oppdragsmelding 423-

Figur 67. LNMDS-ordinasjon av 100 analyseruter med frekvensdata, basert på Bray-Curtis distanser, aksene 1 og 2. Rutenummer 1-100. - LNMDSoridnation diagram of 100 sample plots with frequency abundance data, based on Bray-Curtis distances, axes 1 and 2. Sample plot number 1-100.

© Norsk institutt for naturforskning (NINA) 2010 http://www.nina.no Vennligst kontakt NINA, NO-7485 TRONDHEIM for reproduksjon av tabeller, figurer, illustrasjoner i denne rapporten.

Figur 68. DCA-ordinasjon av 100 analyseruter basert på frekvensdata, aksene 1 og 2. Rutenummer 001-100. - DCA-ordination diagram of 100 sample plots based on frequency abundance data, axes 1 and 2. Sample plot number 001-100.

Figur 69. Hills N1 diversitet for analyserutene i en DCA-ordinasjon av frekvensdatasettet, aksene 1 og 2. - Hill's N1 diversity of the sample plots in a DCA-ordination of the species frequency data, axes 1 and 2.
LNMDS-ordinasjon

Resultatet fra LNMDS-ordinasjonen av frekvensdatasettet viser at analyserutene fordeler seg omtrent likt langs de to første aksene sammenliknet med DCA-ordinasjonen (**figur 67** og **68**). Analyserutene er her vist ved deres løpenummer og ikke feltnummer. Det er en stor grad av strukturell konformitet ved de to vidt forskjellige analysemetodene. Resultatet av 100 iterasjoner viste at LNMDS metodens stress, dvs. kvadratroten av residual kvadratsum dividert på total sum av kvadrerte distanser (jf. Kruskal 1964a), var 0.11. Dette indikerer at det todimensjonale plottet gir en brukbar representasjon av punktfordelingen (jf. Clarke 1991).

Diversitet

Figur 69 viser Hills N1 diversitetsverdier for analyserutene i DCA-ordinasjonen, basert på frekvensdatasettet. Ruteanalyser plassert midt på akse 1, dvs. de som omfatter fastmattevegetasjon, har høgst diversitet. Diversiteten er noe lågere lengst til høgre på akse 1, dvs. i mykmattevegetasjon, og aller lågest i analyserutene med små akse 1 verdier og høge akse 2 verdier, dvs. på heigråmosetuer.

5.2 Miljøvariabler

l **vedlegg 4** er det gitt en oversikt over miljøvariabler fra torv-, vann- og plantevevsprøver med forkortelser og enheter benyttet i tabeller og ordinasjonsdiagrammer. Verdiene av de målte miljøvariablene er vist i tabeller i **vedlegg 5-7**. Innholdet av B, Be, Li, Se i torv og NO₃⁻ i vannprøver fra analyserutene var ikke detekterbart ved FIA-analyse.

Middel-, maksimum-, minimumsverdier og standardavvik for miljøparametre fra torv- og vannprøver (tabellene 3-5) viser at det er relativt stor variasjon innen variablenes verdier. Dette skyldes at prøvene ikke bare er samlet fra ombrotrof myr, men også fra minerotrofe flater med et høgere næringsinnhold. Unntaket er vannprøvene som er samlet fra gjøler med stillestående vann. Disse har liten variasjon innen variablene, men antall prøver er også få.

Relasjoner mellom DCA-akser og miljøvariabler

Kendall korrelasjoner mellom DCA-akseverdier og 14 statistisk signifikante miljøvariabler (se nedenfor) er vist i **tabell 6**. Da det finnes torvprøver fra 96 analyseruter, ble korrelasjonen utført med DCA-akseverdier fra en separat DCA-ordinasjon med de samme 96 rutene. DCA-akse 1 er signifikant korrelert på 0.01 nivå med i alt 10 variabler. Som forventet viser akse 1 høgst korrelasjonen med avstand til grunnvannsnivå (-0.66). Deretter kommer total N (0.45), Fe (-0,43), pH (0.31) og basemetning (0.26).

DCA-akse 2 er signifikant korrelert med fem variabler, der pH og basemetning viser størst korrelasjon (henholdsvis -0.31 og 0.29). DCA-akse 3 har kun én signifikant korrelert variabel (Mn), mens akse 4 har ingen. Korrelasjonsanalysen samsvarer med variabeltestene i CCA ved at vannstandsnivået er den absolutt viktigste forklarende variabel og deretter kommer næringsstatus i torven (se nedenfor).

CCA-ordinasjon

Variabler som ved hjelp av CCA ble funnet statistisk signifikante (p = 0,01) og som hver for seg forklarer mer enn 3 % av artsvariasjonen, er vist i **tabell 7**. Kun kjemiske variabler fra torvprøver og avstand til grunnvann ble testet. Vannstandsnivået forklarer mest av artsvariasjonen (10,3 %), deretter kommer totalt nitrogeninnhold (8,4 %) og basemetning (7,5 %) i torv.

Av de 20 miljøvariablene ble kun syv funnet statistisk signifikant relatert til artsvariasjonen i frekvensdatasettet ved hjelp av "forward selection" i CCA. Dette indikerer at flere av de 20 variablene kan være sterkt korrelerte (se senere for korrelasjonsanalyser mellom miljøvariabler). De 7 variablene ble så benyttet til CCA-ordinasjoner med både frekvens- og prosentdekningsdata fra 96 analyseruter. Resultatene er gitt i **tabell 8**. Det er liten forskjell i bruk av de to datasettene. CCA-aksene i frekvensanalysen forklarer noe mer av artsvariasjonen (e/T_i) enn i prosentdekningsanalysen. Imidlertid er relasjonen mellom arter og miljøfaktorer (e/T) noe bedre forklart ved bruk av prosentdekningsdata enn ved frekvensdata.

Generelt forklarer CCA-akse 1 ca. 13 % av artsvariasjonen. 6 % forklares ved akse 2, 4 % ved akse 3 og kun 2 % ved akse 4. Dette er som normalt noe lågere enn i DCA, der aksene ikke er styrt (constrained) til miljøvariabler. Hele 46 % av relasjonen mellom arter og miljø forklares ved CCA-akse 1 og totalt ca. 90 % ved alle fire aksene.

Figur 70 viser artsordinasjonen i CCA, og **figur 71** viser miljøvariablene som biplott-piler i samme diagram. De kan legges oppå hverandre for tolkning av relasjoner mellom arter og miljø.

Artsordinasjons-diagrammet i CCA av frekvensdataene viser omtrent den samme variasjonen som det tilsvarende DCA-diagrammet (figur 8), men variasjonen langs aksene er snudd. Fuktighetskrevende høljearter som dystarr (Carex limosa) og flere torvmoser (Sphagnum spp.) ligger lågt på akse 1, mens arter som vokser på tuer ligger høgt på samme akse. Biplott-figuren av miljøvariablene viser da også at CCA-akse 1 er helt korrelert med grunnvannsnivået. Imidlertid er næringsgradienten nå dratt noe sterkere ut langs akse 2 enn i DCA-ordinasjonen. Relativt næringskrevende arter som særbustarr (Carex dioica), trådstarr (C. lasiocarpa), takrør (Phragmites australis) og bukkeblad (Menyanthes trifoliata) viser høge verdier ved horisontalprojeksjon på miljøvariablene Ca, basemetning, pH og N, mens arter som blåbær (Vaccinium myrtillus), rypebær (Arctostaphylos alpina), krekling (Empetrum nigrum), molte (Rubus chamaemorus), furutorvmose (Sphagnum capillifolium), rusttorvmose (S. fuscum), etasjemose (Hylocomium splendens) og furumose (Pleurozium schreben) vokser på mer næringsfattig torv med høgere verdier av H og P.

Tabell 3. Kjemiske parametere fra torvprøver og høgde over grunnvannsnivå. Middel-, maksimum-, minimumsverdier og standardavvik av 96 analyseruter. Forkortelser og enheter er forklart i vedlegg 4. - Chemical parameters from peat samples and depth to water table. Mean-, maximum-, minimum values and standard deviation of 96 sample plots. Abbreviations and units are explained in appendix 4.

Variabel Variable	Middel Mean	Maksimum Maximum	Minimum Minimum	SD SD
GrVann - WatTab	31,22	100,00	1,00	27,41
pН	4,33	5,86	3,96	0,32
Ν	1093,52	1835,00	282,00	353,58
н	106,02	472,30	0,00	71,12
Al	3,51	23,78	0,48	4,09
Ba	30,41	69,00	8,00	12,83
С	236,34	491,00	2,00	90,16
Са	59,77	303,96	13,86	50,94
Fe	0,52	3,37	0,01	0,51
к	8,98	28,67	2,86	3,82
Mg	65,79	109,88	19,12	17,13
Mn	0,13	0,68	0,01	0,13
Na	16,86	29,17	9,40	3,40
Р	1,53	4,94	0,10	0,97
S	3,05	5,66	1,06	0,92
Si	155,07	1713,00	29,00	232,85
Sr	370,97	623,00	119,00	92,17
Zn	189,68	741,00	5,00	143,00
Kap - CEC	383,24	693,70	170,70	111,77
Basem - BS	72,42	99,90	30,50	11,37

Tabell 4. Kjemiske parametere i vannprøver fra analyseruter i transektene A-E. Middel-, maksimum- minimumsverdier og standardavik for 86 prøver. Forkortelser og enheter forklart i vedlegg 4. - Chemical parameters in water samples from the vegatation sample plots in transects A-E. Mean-, maximum-, minimum values and standard deviation of total 86 samples. Abbreviations and units explained in appendix 4.

	Middel Mean	Maksimum Maximum	Minimum Minimum	SD SD
Ledn / Cond	70,18	279,00	49,60	32,03
pН	4,63	6,50	4,16	0,46
N	4,60	48,60	0,73	6,69

- nina oppdragsmelding 423

Tabell 5. Kjemiske parametere i vannprøver fra åpne gjøler. Middel-, maksimum-, minimumsverdier og standardavik for 4 prøver. Forkortelser og enheter forklart i vedlegg 4. - Chemical parameters in water samples from small catchments on the bog. Mean-, maximum-, minimum values and standard deviation of 4 samples. Abbreviations and units explained in appendix 4.

	Middel Mean	Maksimum Maximum	Minimum Minimum	SD SD
Lodp / Cond	44.15	46 70	42.40	2 1 2
Lean / Cona	44,15	40,70	42,40	2,12
рН	5,09	6,20	4,65	0,74
AI	0,07	0,11	0,05	0,03
Ca	0,49	1,05	0,27	0,38
Cu	0,02	0,02	0,01	0,01
Fe	0,17	0,31	0,03	0,16
Mg	0,67	0,85	0,57	0,13
Na	6,15	6,93	5,73	0,57
S	0,50	0,57	0,43	0,08
Si	0,07	0,07	0,06	0,01
N	0,54	0,55	0,52	0,01

Tabell 6. Kendall rangkorrelasjoner mellom analyserutenes DCA-verdier og 14 jordparametere. Korrelasjonskoeffisienter og deres signifikansnivå (i parentes) er angitt. - Kendall rank correlations between sample plot scores relative to DCA-ordination axes and 14 soil parameters. Correlation coefficients and their statistical significance level (in brackets) are specified.

	DCA 1	DCA 2	DCA 3	DCA 4
Basem	0,2626	0,2880	-0,1461	-0,0169
BS	(0,000)	(0,000)	(0,035)	(0,807)
Са	0,0809	0,1314	-0,0744	0,0827
	(0,243)	(0,058)	(0,283)	(0,233)
Fe	-0,3420	-0,0051	0,1455	0,0823
	(0,000)	(0,942)	(0,037)	(0,238)
GrVann	-0,6605	0,1376	-0,0566	0,0009
Wat Tab	(0,000)	(0,050)	(0,421)	(0,990)
н	-0,2359	-0,3135	0,1170	0,0261
	(0,001)	(0,000)	(0,092)	(0,706)
Kap	-0,0733	-0,1355	-0,1193	0,1018
CEC	(0,290)	(0,050)	(0,085)	(0,142)
Mn .	-0,2299	0,2105	-0,1925	0,0373
	(0,001)	(0,003)	(0,007)	(0,598)
N	0,4564	0,0799	-0,1470	-0,0882
	(0,000)	(0,249)	(0,034)	(0,203)
Na	-0,2491	-0,2438	0,0274	-0,0366
	(0,000)	(0,000)	(0,692)	(0,597)
Р	-0,2994	-0,0177	-0,0624	-0,1442
	(0,000)	(0,800)	(0,372)	(0,039)
рН	0,3116	-0,3031	-0,1044	0,1071
	(0,000)	(0,000)	(0,135)	(0,125)
S ,	0,2261	-0,1224	-0,0402	0,0960
	(0,001)	(0,078)	(0,562)	(0,167)
Si	0,0482	-0,2127	-0,1098	0,0530
	(0,488)	(0,002)	(0,114)	(0,445)
Zn	-0,2449	-0,0894	0,0665	-0,0542
	(0,000)	(0,198)	(0,337)	(0,434)

Tabell 7. Statistisk signifikante miljøvariabler (p = 0,01) som hver for seg forklarer mer enn 3 % av artsvariasjonen i frekvensdatasettet. $e_{ccAI} = egenverdi$ for CCA-akse 1, Ti = total artsvariasjon, $e_{ccAI}/Ti =$ miljøparameterens forklaring av artsvariasjonen. - Statistically significant environmental variables (p = 0,01) explaining more than 3 % of the species variation in the frequency abundance data. $e_{ccAI} = eigenvalue$ of CCA-axis 1, Ti = total inertia, $e_{ccAI}/Ti =$ variation in the species data explained by the environmental variable.

Variabel Variable	eccai	е _{сса} ,/Ті %
GrVann - Wat Tab	0,233	10.3
N	0,212	8,4
Basem - BS	0,168	7,5
Н	0,151	6,7
Са	0,119	5,3
Na	0,118	5,2
рΗ	0.114	5,1
Fe	0,103	4,6
Ρ	0,095	4,2
Si	0,091	4,0
Mn	0,090	4,0
Kap - CEC	0,081	3,6
Zn	0,069	3,1
S	0,067	3,0

© Norsk institutt for naturforskning (NINA) 2010 http://www.nina.no Vennligst kontakt NINA, NO-7485 TRONDHEIM for reproduksjon av tabeller, figurer, illustrasjoner i denne rapporten. **Tabell 8**. CCA-ordinasjonsresultater av 96 analyseruter og 7 miljøparametere. Egenskaper ved ordinasjonsaksene. Ti = total artsvariasjon, T = summen av alle kanoniske egenverdier, e = egenverdi, r = arts-miljøkorrelasjoner, e/Ti = aksens andel av forklart artsvariasjon, Se_{IP}/Ti = de n første aksenes andel av forklart artsvariasjon. e/T = aksens andel av forklart arts-miljørelasjon, Se_{IP}/T = de n første aksenes andel av forklart arts-miljørelasjon. - CCA-ordination results of 96 samples and 7 environmental variables. Characteristics of the ordination axes. Ti = total inertia, T = trace (sum of all canonical eigenvalues), e = eigenvalue, r = species-environment correlations, e/Ti = variation of the species explained by the axis, Se_{IP}/Ti = variation of the species explained by the first n axes, e/T = variation of the species-environment relation explained by the n first axes.

Akse - axis	1	2	3	4	Ti	Т
CCA (frekvens) -						
CCA (frequency)					2,25	0,659
е	0,300	0,133	0.106	0,044		
r	0,853	0,841	0,851	0,636		
e/Ti	13,4	5,9	4,7	1,9		
Se _n /Ti (%)	13,4	19,3	24,0	25,9		
e/T (%)	45,5	20,3	16,0	6,6		
Se _n /T (%)	45,5	65,8	81,8	88,4		
CCA (prosent) -						
CCA (percentage)					2,48	0,664
е	0,306	0,150	0.095	0.048		
r	0,862	0,841	0,887	0,584		
e/Ti	12,4	6,0	3,9	1,9		
Se _n /Ti (%)	12,4	18,4	22,3	24,2		
e/T (%)	46,1	22,5	14,3	7,2		

Figur 70. CCA-ordinasjon av arter basert på 96 analyseruter med frekvensdata og 7 miljøvariabler, aksene 1 og 2. - CCAordination diagram of species based on 96 sample plots with species frequency data and 7 environmental variables, axes 1 and 2.

Figur 71. CCA-biplotdiagram med 7 miljøvariabler. - CCA-biplot diagram of 7 environmental variables, axes 1 and 2.

	Basem BS	Са	Fe	GrVann Wat Tab	Н	Kap CEC	Mn	N	Na	Р	pН	S	Si
Zn	-0.3278 (0.000)	0.0984 (-0.156)	0.2361 (-0.001)	0.2816 (0.000(0.4940 (0.000)	0.3441 (0.000)	0.3137 (0.000	-0.4234 (0.000)	0.4250 (0.000)	0.2832 (0.000)	0.0175 (-0.802)	0.0370 (-0.595)	0.0212 (-0.761)
Si	-0.2389 (-0.001)	-0.0970 (-0.163)	0.1205 (-0.085)	0.0299 (-0.671)	0.1343 (-0.053)	0.1555 (-0.025)	-0.0124 (-0.861)	-0.0544 (-0.434)	0.0352 (-0.612)	-0.1845 (-0.008)	0.3480 (0.000)	0.2393 (-0.001)	
S	0.0546 (-0.432)	0.2083 (-0.003)	0.0316 (-0.651)	-0.2335 (-0.001)	0.0624 (-0.369)	0.2928 (0.000)	0.0606 (-0.393)	0.1352 (-0.052)	0.0514 (-0.459)	-0.0813 (-0.245)	0.3047 (0.000)		
рH	-0.0381 (-0.586)	0.1848 (-0.008)	-0.0441 (-0.530)	-0.2599 (0.000)	0.1264 (-0.071)	0.3717 (0.000)	-0.0495 (-0.489)	0.0637 (-0.362)	-0.0033 (-0.962)	-0.2980 (0.000)			
Ρ	-0.0582 (-0.405)	0.0595 (-0.394)	-0.0372 (-0.597)	0.2310 (-0.001)	0.2077 (-0.003)	0.1061 (-0.128)	0.1970 (-0.006)	-0.1566 (-0.025)	0.3551 (0.000)				
Na	-0.3851 (0.000)	0.0281 (-0.685)	0.1325 (-0.057)	0.2417 (-0.001)	0.5704 (0.000)	0.3662 (0.000)	0.0295 (-0.678)	-0.4186 (0.000)					
N	0.5228 (0.000)	0.0669 (-0.334)	-0.4229 (0.000)	-0.4782 (0.000)	-0.5657 (0.000)	-0.2782 (0.000)	-0.1611 (-0.023)						
Mn	0.0083 (-0.907)	0.2125 (-0.003)	0.1039 (-0.145)	0.2925 (0.000)	0.0560 (-0.429)	0.2595 (0.000)							
Kap CEC	-0.0666 (-0.337)	0.5183 (0.000)	0.0510 (-0.464)	0.0993 (-0.158)	0.3912 (0.000)								
Н	-0.6767 (0.000)	-0.0742 (-0.285)	0.3220 (0.000)	0.2136 (-0.002)									
GrVann Wat Tab	-0.2603 (0.000)	-0.0839 (-0.232)	0.2803 (0.000)										
Fe	-0.4046 (0.000)	-0.0896 (-0.199)											
Ca	0.3822 (0.000)												

Tabell 9. Kendall rangkorrelasjoner mellom 14 jordparametere. Korrelasjonskoeffisienter og deres signifikansnivå (i parentes) er angitt. - Kendall rank correlations between 14 soil parameters. Correlation coefficients and their statistical significance level (in bracket) are specified.

Korrelasjoner mellom miljøparametere fra torvanalyser. Både Kendall korrelasjonsanalyser (tabell 9) og PCA-ordinasjonen (figur 72) viser omtrent det samme korrelasjonsmønsteret. Si, pH og Ca er sterkt positivt korrelert, det samme er avstand til grunnvannsnivå, H, Zn og Fe. Basemetning og N er negativt korrelert med variablene 'avstand til grunnvann', Na, H, Fe og Zn. Korrelasjonen mellom vann-nivå og basemetning skyldes det relativt næringsrike, minerotrofe felt A8 nederst i transekt A med høg vannstand. Kendall korrelasjoner viser svært høg positiv korrelasjon mellom utbyttingskapasitet og Ca, denne kommer ikke så godt fram i PCAordinasjonen.

5.3 Plantevevsprøver

Tabellene 10-13 og **figur 73** viser at innholdet av visse elementer viser en økning i ulike torvmoser som representerer gradienten fra tue til hølje, dvs. fra heigråmose (*Racomitrium lanuginosum*), via kysttorvmose (*Sphagnum austinii*) og vortetorvmose (*S. papillosum*) til vasstorvmose (*S. cuspidatum*). Dette gjelder for elementene Ba, Mg, N og Sr. Det er også markerte forskjeller i innhold av andre uorganiske stoffer mellom ulike moser. Heigråmose har generelt lågere gjennomsnittsverdier enn torvmosene. Det er således viktig at man ved miljøovervåking av moser ikke blander flere arter i en prøve (f. eks. ulike torvmoser).

Figur 72. PCA-ordinasjon av korrelasjoner mellom miljøvariabler. - PCA-ordination diagram of correlations between environmental variables.

Tabell 10. Kjemiske variabler fra heigråmose (Racomitrium lanuginosum). Middel-, maksimum-, minimumsverdier og standardavvik for 11 prøver. Enheter vist i vedlegg 4. - Chemical variables from (Racomitrium lanuginosum). Mean-, maximum-, minimum values and standard deviation of 11 samples. Units shown in appendix 4.

Variabel	Middel	Maksimum	Minimum	SD
Variable	Mean	Maximum	Minimum	SD
AI	5.09	7.56	2.43	1.51
Ва	20.00	56.00	12.00	13.08
Ca	20.68	28.70	15.20	4.16
Cu	54.45	67.00	42.00	8.45
Fe	3.01	4.45	1.52	0.88
К	19.91	23.20	13.20	2.87
Mg	40.05	46.30	31.00	4.03
Mn	0.20	0.88	0.05	0.25
N 🖉	228.36	248.00	179.00	18.23
Na	13.65	18.43	10.24	2.17
Р	4.02	5.50	2.40	1.01
Pb	27.64	34.00	27.00	2.11
S	11.14	12.68	9.44	0.85
Sr	132.00	160.00	111.00	17.09
Zn	141.36	192.00	108.00	26.41

Tabell 11. Kjemiske variabler fra kysttorvmose (Sphagnum austinii). Middel-, maksimum-, minimumsverdier og standardavvik for 9 prøver. Enheter vist i vedlegg 4. - Chemical variables from Sphagnum austinii. Mean-, maximum-, minimum values and standard deviation of 9 samples. Units shown in appendix 4.

Variabel Variable	Middel Mean	Maksimum Maximum	Minimum Minimum	SD SD
Al	2,86	3,52	2,03	0,50
Ва	25,89	34,00	12,00	7,59
Са	37,59	45,10	26,50	6,53
Cu	36,56	39,00	31,00	2,40
Fe	1,75	2,18	1,35	0,26
к	90,17	109,90	77,60	11,14
Mg	74,68	92,00	61,00	9,49
Mn	1,50	4,20	0,12	1,36
Ν	325,33	372,00	273,00	37,39
Na	53,93	63,17	46,19	4,89
Р	7,78	10,00	6,50	1,11
Pb	27,00	27,00	27,00	0,00
S	25,70	28,84	23,18	1,72
Sr	164,89	213,00	125,00	26,21
Zn	409,00	846,00	193,00	220,69

Tabell 12. Kjemiske variabler fra vortetorvmose (Sphagnum papillosum). Middel-, maksimum-, minimumsverdier og standardavvik av 11 prøver. Enheter vist i vedlegg 4. - Chemical variables from Sphagnum papillosum. Mean-, maximum-, minimum values and standard deviation of 11 samples. Units shown in appendix 4.

Variabel Variable	Middel Mean	Maksimum Maximum	Minimum Minimum	SD SD
Al	4,44	7,02	2,79	1,32
Ва	51,36	64,00	37,00	8,62
Са	48,37	55,20	40,20	5,37
Cu	36,55	67,00	27,00	11,12
Fe	6,55	13,52	2,34	3,66
К	71,14	87,90	57,70	9,29
Mg	106,85	123,10	91,10	10,36
Mn	0,17	0,55	0,08	0,14
Ν	344,00	404,00	311,00	27,56
Na	46,46	58,41	36,68	7,80
Р	6,05	8,30	4,50	0,96
Pb	33,27	60,00	27,00	12,62
S	25,76	29,02	23,98	1,87
Sr	331,00	419,00	232,00	56,99
Zn	373,45	509,00	258,00	85,37

Tabell 13. Kjemiske variabler fra vasstorvmose (Sphagnum cuspidatum). Middel-, maksimum-, minimumsverdier og standardavvik for 9 prøver. Enhter vist i vedlegg 4. - Chemical variables from Sphagnum cuspidatum. Mean-, maximum-, minimum values and standard deviation of 9 samples. Units shown in appendix 4.

Variabel	Middel	Maksimum	Minimum	SD
Variable	Mean	Maximum	Minimum	SD
AI	2,80	5,85	1,34	1,35
Ва	96,00	125,00	50,00	23,21
Са	39,64	52,80	31,80	6,81
Cu	35,44	45,00	31,00	4,28
Fe	4,26	7,04	1,76	1,71
к	123,23	154,20	101,40	18,94
Mg	108,00	125,40	95,80	11,71
Mn	0,06	0,08	0,04	0,01
Ν	433,78	564,00	357,00	64,85
Na	38,11	44,88	31,91	4,80
Р	7,91	9,80	6,30	0,99
Pb	42,33	58,00	27,00	11,02
S	27,78	34,78	21,51	4,25
Sr	540,00	723,00	328,00	123,70
Zn	654,67	974,00	232,00	272,21

Figur 73. Gjennomsnittlig innhold av kjemiske elementer i utvalgte moser som representerer en gradient fra tue til hølje. Ba og Sr i μ mol/kg, Mg og N i mmol/kg. - Mean values of chemical elements in different mosses representing a gradient from hummock to hollow. Ba and Sr in μ mol/kg, Mg and N in mmol/kg.

6 Diskusjon

6.1 Feltmetodikk

Analyserutene ble lagt ut i transekter. Dette ble gjort fordi vegetasjon på myr generelt endrer seg etter myrflate-/myrkant gradienten, næringsgradienten, gradienten i dybde til vann-nivå og torvproduksjons-gradienten (se kap. 2).

Ved overvåkning av myrvegetasjon bør man unngå de mest ustabile vegetasjonsutformingene. Torvproduksjons-gradienten som er korrelert med erosjon og andre abiotiske forstyrrelser, er derfor minimalt representert i materialet. Likeledes er myrflate-/myrkant gradienten lite utbredt på Havmyran, og transektene ble derfor valgt til å dekke tørr fuktig gradienten, dvs. variasjonen i ombrotrof tue-høljevegetasjon. I tillegg ble enkelte minerotrofe partier inkludert for å øke den totale gradienten. Ordinasjonsmetodene kan da bedre belyse eventuelle endringer i vegetasjonen i en framtidig undersøkelse.

Analysefelter ble lagt ut subjektivt for å få med mest mulig av variasjonen i vegetasjon og økologiske forhold i transektet, samtidig som enkelte vegetasjonstyper ikke skulle bli overrepresentert. Rutestørrelsen ble satt til 0,25 m², som er anbefalt i analyse av myrvegetasjon (Økland 1990b), og antall småruter til ni. Trolig ville 16 småruter gitt et bedre frekvensmål for artsvariasjonen i analyserutene (Økland pers. med.). Imidlertid ble ni småruter valgt som et kompromiss mellom tidsforbruk og optimalitet. Ordinasjonsresultatene viser at smårutefrekvens-analysen gir tilnærmet den samme variasjon i artssammensetningen som prosentdeknings-dataene, og ni småruter skulle således gi et pålitelig bilde av artsvariasjonen.

Aluminiumsrørene som ble brukt til fastmontering av analyserammen, kan ved forvitring muligens gi effekter på det kjemiske innholdet i myrvannet. Rørene ble imidlertid valgt for å kunne stå imot frost, iserosjon og bevegelser i torv. Det er mulig at spesiallagde plastrør kan tåle de samme påkjenningene, og at aluminiumsrørene bør skiftes ut, hvis slike plastrør finnes.

Vannprøvene fra hver analyserute ble tatt fra nedsatte PVC-dreneringsrør som ikke skulle inneholde oppløsbare stoffer. Over tid vil trolig vannmiljøet inne i rørene endre seg, da vannet ikke er i direkte kontakt med mosene. Ved gjenanalyse av myrvann bør derfor rørene først tømmes for vann og prøvene taes dagen etter. Vannmiljøet inne i PVCrørene vil således bli mer sammenlignbart med første prøvetakning.

Det kan også diskuteres i hvor stor grad det er formålstjenlig å ta vannprøver en gang i året, da vannkvaliteten på ombotrof myr varierer gjennom året (Boatman

Vennligst kontakt NINA, NO-7485 TRONDHEIM for reproduksjon av tabeller, figurer, illustrasjoner i denne rapporten.

et al. 1975). Vi mener likevel at et stort antall prøver (86 prøver i 1995) og gjentak i samme vegetasjonsperiode etter noen dagers oppholdsvær, bør kunne vise om det har skjedd en generell endring i vannkvaliteten i det overvåkede området.

6.2 Indirekte gradientanalyser og klassifikasjon

Multivariate numeriske metoder har fått en stadig mer sentral rolle i biologiske forsknings- og overvåkningsprogrammer. I vegetasjonsøkologiske arbeider har disse ordinasjonsmetodene vist seg å være svært anvendelige til å beskrive vegetasjonsmønstre, finne gradientstrukturer, estimere diversitet og etter reanalysering å kvantifisere vegetasjonsdynamikk (jf. Økland & Eilertsen 1993).

To uavhengige sett av metoder har etter hvert fremstått som et "state of the art" -konsept innen vegetasjonsøkologisk forskning: DCA - Detrended Correspondence Analysis (Hill 1979a, Hill & Gauch 1980) og MDS - Multidimensional Scaling (Kruskal 1964a, b, Minchin 1987). Begge konseptene tar utgangspunkt i en art/rute-matrise, og reduserer dimensjonaliteten ned til et lite antall. Arter og ruter kan så projiseres ned i dette fådimensjonale ordinasjonsrommet. Da vegetasjonen kan oppfattes som en funksjon av de økologiske forholdene, kan de ordinasjonsaksene som fremkommer gis en økologisk tolkning. En rekke arbeider viser at både DCA og MDS genererer reelle ordinasjonsakser som kan tolkes som økologisk gradienter, og at de i liten grad genererer forvrengningsakser uten økologisk informasjon.

I dette arbeidet har vi benyttet de to uavhengige metodene på ett og samme datasett. Resultatet viser en stor grad av likhet mellom de to ordinasjonene. Det er derfor sannsynlig at arts- og rutefordelingen, slik de kommer fram i ordinasjonsresultatene, gjenspeiler den reelle strukturen i datasettet.

TWINSPAN-klassifikasjonen deler de 100 analyserutene inn i fire grupper (vegetasjonstyper) tolket som mykmattevegetasjon, fastmattevegetasjon, heigråmosetuer og torvmosetuer. **Tabell 1** viser at det er gradvise overganger av arter mellom disse gruppene. Likevel er TWINSPANgruppene relativt godt adskilte i DCA-ordinasjonsdiagrammet (**figur 15**). Både klassifikasjon og indirekte ordinasjon belyser således den viktigste økologiske gradienten i materialet, nemlig vegetasjonsflatens avstand til vann-nivå. DCA-akse 2 gjenspeiler variasjon i tuevegetasjon, særlig tuer over bart fjell og tuer på myr, og i mindre grad næringsgradienten (jf. CCA-ordinasjonen) Dette skyldes trolig at det er svært få ruter fra minerotrof myr.

6.3 Direkte gradientanalyser og miljøparametere

Direkte gradientanalyser blir nyttet til å studere hvilke miljøparametere eller hvilket sett av miljøparametere som best forklarer artenes mengdefordeling i materialet. RDA (Redundancy Analysis) og CCA, er to velkjente metoder for slik styrt (constrained) ordinasjon. Valget mellom RDA og CCA er et valg mellom metoder som forutsetter en lineæreller en unimodal fordeling av artenes respons til underliggende komplekse gradienter. For korte gradienter kan valget av metoder diskuteres, men for lengre gradienter, > 2,0 SD-enheter, vil CCA ofte foretrekkes (jf. ter Braak 1987b). Direkte gradientanalyser av datasettet fra Havmyran er derfor utført med CCA, da gradientlengden fra den indirekte gradientanalysen var 2,23 SD-enheter langs førsteaksen.

CCA-ordinasjonen viser at vannivået er den viktigste miljøparameteren, mens næringsinnholdet i torv også forklarer mye av artsvariasjonen. Av de kjemiske parameterene i torv er det totalt nitrogeninnhold som forklarer mest. Dette kan være interessant i forurensingssammenheng da nitrogen er det viktigste forurensende stoffet som vil bli sluppet ut fra fabrikkene på Tjeldbergodden.

Det er i denne omgang ikke utført direkte gradientanalyser mellom de kjemiske parametrene i vannprøvene og vegetasjonsdataene. Dette kan lett utføres ved senere gjenanalyser for å se om det har skjedd endinger i vegetasjonen relatert til vannmiljøet.

På ombrotrof myr vil grunnvannets og torvas kjemiske sammensetning være avhengig av nedbørens sammensetning, og dermed variere i forhold til avstand til kysten (Malmer 1962) og i forhold til luftforurensinger (Malmer 1988). Nedbøren på Hitra er lite forurenset (Knutsen & Johnsrud 1996) og de målte kjemiske verdiene i torv, myrvann og moser er representative for ombrotrofe myrer i lite forurensede områder. Dette bekreftes også ved at NO3konsentrasjonen i myrvannsprøvene var så låg (mindre enn 0.02 mg/l) at den ikke var detekterbar ved FIA-analyse. Innholdet av Mg, Na og K er imidlertid høgere enn på mer kontinentale myrer. Dette skyldes salter fra havet som er transportert med vind og nedbør. pH i grunnvann på ombrotrof myr i Skandinavia varierer ofte mellom 3,7 og 4,3 (Sjörs 1948, Malmer 1962, Flatberg 1970). Gjennomsnittsverdien av prøvene fra Havmyran viser en pH på 4,3, men da er noen minerotrofe prøver tatt med. Innholdet av uorganiske elementer i torvmosene viser bra samsvar med verdier fra lite forurensede områder i Finland (Pakarinen & Tolonen 1977, Pakarinen 1981, Aulio 1980, 1982). Innholdet av nitrogen, fosfor, Cu, Zn, og Pb er lågere enn i mer forurensede områder i Sverige (Malmer 1988) og betraktelig lågere enn i Polen (Wojtun 1994). Nitrogeninnholdet i heigråmose (Racomitrium lanuginosum) stemmer godt overens med data fra lite forurensede områder i Norge (Fremstad & Eilertsen 1994).

7 Sammendrag

I forbindelse med industriutbyggingen på Tjeldbergodden, Aure kommune i Møre og Romsdal, har Statoil startet et miljøovervåkingsprogram. Det omfatter bl. a. overvåking av vegetasjonstyper som kan bli påvirket av nedfall av forurensende stoffer. Denne rapporten presenterer resultatene fra etableringen av et referanseområde for overvåking av ombrotrof myr i Havmyran naturreservat på Hitra i Sør-Trøndelag, rett nord for Tjeldbergodden. Formålet med overvåkingen er å vise om det over tid vil skje endringer i myrvegetasjon, torv og myrvann på grunn av utslipp fra industrien, særlig av nitrogen.

Overvåkingsområdet ble etablert i 1995. Fem transekter, A-D, er lagt ut for å dekke mest mulig av den floristiske og økologiske variasjon langs tue-høljegradienten på ombrotrof myr. I tillegg er noen få minerotrofe partier tatt med for å øke gradienten i materialet. Totalt er det lagt ut 100 permanent oppmerkede analyseruter (0,5 x 0,5 m). Disse er analysert for plantearters frekvens i 9 småruter og prosent dekning. Det foreligger således to datasett for vegetajonsanalysene, ett frekvensdatasett og ett prosentdekningsdatasett.

Torv- og vannprøver ble samlet inn i tilknytning til analyserutene og analysert ved NISKs laboratorier. Torvprøvene er ekstrahert med 1 M NH₄NO₃, titrert for utbyttbar aciditet og analysert for utbyttbare ioner og ekstraherbare elementer (AI, B, Ba, Be, C, Ca, Fe, K, Li, Mg, Mn, Na, P, S, Sc, Sr og Zn) ved ICP-metodikk (inductive coupled plasma emission spectroscopy). Uttbyttingskapasitet og basemetning ble regnet ut. Totalt nitrogen ble analysert ved Kjeldahl-oppslutning. Vannprøvene er analysert for pH og ledningsevne. Totalt nitrogen og NO3- ble bestemt ved "flow injection" analyse (FIA). Det er også samlet 40 plantevevsprøver fra heigråmose (Racomitrium lanuginosum), kysttorvmose (Sphagnum austinii), vortetorvmose (S. papillosum) og vasstorvmose (S. cuspidatum) for totalanalyse av kationer (ICP) og nitrogen (Kjeldahl). Analysene av miljøet skal bidra til å forklare dagens artssammensetning, samt eventuelle endringer i vegetasjon som følge av utslipp til luft fra industrien.

Vegetasjons- og miljødataene ble behandlet numerisk med multivariate metoder, både for vegetasjonsbeskrivelse og for analyser av relasjoner mellom vegetasjon og miljøfaktorer. Analysene ble utført etter standardisering ved veiing av matriseelementer og nedveiing av sjeldne arter. Klassifikasjon ble utført med TWINSPAN (Two-Way Indikator Species Analysis) og med Bray-Curtis ulikhetsmål. Indirekte gradientanalyser ble utført med DCA (Detrended Correspondence Analysis) og LNMDS (Local Nonmetric Multidimensional Scaling). Direkte gradientanalyser ble utført med CCA (Canonical Correspondence analysis). Hver enkelt miljøparameters forklaring av artsvariasjonen ble testet med partiell CCA og "Monte Carlo permutation" tester. Kendalls korrelasjonskoeffisient ble brukt til korrelasjonsanalyser mellom miljøvariabler og DCA-akseverdier, og innbyrdes mellom miljøvariabler. Korrelasjoner mellom miljøvariabler ble også undersøkt ved PCA (Principal Component Analysis).

Vegetasjonen i de analyserte transektene er representativ for atlantisk høgmyr. Det er registret 93 arter, derav 25 karplante-, 49 mose- og 19 lavarter i de 100 analyserutene. TWINSPAN-klassifikasjonen deler analyserutene i fire grupper: heigråmosetuer, torvmosetuer, fastmatter og mykmatter.

DCA-odinasjonen av frekvensdatasettet og prosentdeknings-datasettet gav nokså like resultat. Gradientlengden på første DCA-akse er henholdsvis 3,6 og 3,8 for de to datasettene. Førsteaksene har en egenverdi på 0,42. Dette utgjør ca. 19 % av den totale artsvariasjon. Totalt forklarer de fire første aksene ca. 33 % av variasjonen i materialet. De indirekte gradientanalysene gjenspeiler tuehøljegradienten langs første ordinasjonsakse og en andre akse med variasjon av arter etter ulikheter i substrat og næringsforhold.

Typiske arter i tuene er blåbær (Vaccinium myrtillus), blokkebær (V. uliginosum), rypebær (Arctostaphylos alpina), melbær (A. uva-ursi), dvergbjørk (Betula nana), heigråmose (Racomitrium lanuginosum) og lav. Artsdiversiteten er høgst i fastmattevegetasjon med noe tuepreg. Viktige arter her er kvitlyng (Andromeda polifolia), klokkelyng (Erica tetralix), røsslyng (Calluna vulgaris), tettegras (Pinguicula vulgaris), rome (Narthecium ossifragum), bjønnskjegg (Trichophorum cespitosum), flaskestarr (Carex rostrata), duskull (Eriophorum angustifolium), akssigd (Dicranum leioneuron), torvnikke (Pohlia sphagnicola), kysttorvmose (Sphagnum austinii), raudtorvmose (S. rubellum), raudmuslingmose (Mylia taylorii), torvflak (Calypogeia sphagnicola), sveltsaftmose (Riccardia latifrons) og bakkefrynse (Ptilidium ciliare). Typiske arter for mykmatter er dystarr (Carex limosa), vasstorvmose (Sphagnum cuspidatum), stivtorvmose (S. compactum), bjørnetorvmose (S. lindbergii) og vassnøkkemose (Wamstorfia fluitans). Artsordinasjonen viser også at minerotrofe arter som bukkeblad (Menvanthes trifoliata), duskull (Eriophorum angustifolium), flaskestarr (Carex rostrata), trådstarr (C. lasiocarpa) og takrør (Phragmites australis) er samlet relativt høgt på DCAakse 1, og at de er noe avgrenset fra mindre næringskrevende arter langs akse 2.

LNMDS-ordinasjonen av frekvensdatasettet viser at analyserutene fordeler seg omtrent likt langs de samme gradientene som i DCA. Ordinasjonen bekrefter således hovedstrukturen i datamaterialet.

De direkte ordionasjonsanalysene viser at den viktigste miljøparameteren er vannstandsnivåets høgde i forhold til vegetasjonsoverflaten. Deretter kommer torvas næringsstatus. Vannstandsnivået forklarer 10,3 % av artsvariasjonen, totalt nitrogen i torv 8,4 %, basemetning 7,5 %, H 6,7 %, Ca 5,3 %, Na 5,2 % og pH 5,1 %. Fe, P, Si, Mn, utbyttingskapasitet, Zn og S forklarer hver for seg mindre enn 5 %. CCA-akse 1 forklarer ca. 13 % av artsvariasjonen. 6% forklares ved akse 2, 4% ved akse 3 og kun 2 % ved akse 4. Hele 46 % av relasjonen mellom arter og miljø forklares ved CCA-akse 1, og totalt ca. 90 % ved alle fire aksene.

Korrelasjonsanalyser viser positiv korrelasjon mellom Si, pH og Ca i torv. 'Avstand til grunnvann', H, Zn og Fe i torv er også positivt korrelert med hverandre. Basemetning og N er negativt korrelert med variablene 'avstand til grunnvann', Na, H, Fe og Zn.

Innholdet av uorganiske elementer i moser varierer mellom arter, selv innen samme slekt. Det er således viktig at man ved miljøovervåkning av moser ikke blander forskjellige arter til en prøve. Heigråmose (*Racomitrium lanuginosum*) viser generelt lågere gjennomsnittsverdier enn torvmosene, og innholdet av Ba, Mg, N og Sr øker i moser som representerer en gradient fra tue til hølje.

Forurensingsnivået i det undersøkte myrsystemet på Havmyran er lågt sammenlignet med områder lenger sør i Europa.

8 Summary

In connection with its industrial development at Tjeldbergodden, in Aure in the county of Møre & Romsdal, Statoil has initiated an environmental monitoring programme which includes the monitoring of vegetation types that may be affected by deposition of substances from polluted air. This report gives the results of the establishment of a reference area for monitoring ombrotrophic mire in the Havmyran Nature Reserve on the island of Hitra in the county of Sør-Trøndelag. The aim of the project is to reveal changes in the vegetation that may occur as a result of pollution from the industry being established at Tjeldbergodden, principally nitrogen.

The monitoring area was established in 1995. Five transects were laid out to cover as much as possible of the floristic and ecological diversity in the hummock-hollow gradient on the bog. A few minerotrophic sites were included to increase the gradient in the vegetation. 100 sample plots ($0.5 \times 0.5 \text{ m}$), divided into nine subplots, were analysed for species frequency and percentage cover abundance. Two sets of species abundance data are available, one with species frequency and one with percentage cover.

Samples of peat and bog water were collected from the sample plots and analysed in the chemistry laboratory at NISK. The peat samples were extracted in 1M NH₄NO₃, titrated for exchangeable acidity and analysed for exchangeable and extractable elements (AI, B, Ba, Be, C, Ca, Fe, K, Li, Mg, Mn, Na, P, S, Sc, Sr and Zn) using the ICP technique (inductive coupled plasma emission spectroscopy). The cation exchange capacity and base saturation were calculated and total nitrogen was analysed by Kieldahl digestion. The water samples were analysed for pH and conductivity. Total nitrogen and NO3⁻ were determined by the flow injection method (FIA). 40 samples of plant material from Racomitrium lanuginosum, Sphagnum austinii, S. papillosum and S. cuspidatum were analysed for their total content of cations (ICP) and nitrogen (Kjeldahl). The analyses of the environment will explain the present variation in species and possible changes in the vegetation due to emissions from the industrial plant.

The vegetation and environmental data have been treated numerically using multivariate methods, both to describe the vegetation and to analyse the relationships between the vegetation and the environment. The analysis was performed after standardisation by means of weighting of matrix elements, and downweighting of rare species. The vegetation was classified by Two-Way Indicator Species Analysis (TWINSPAN) and Bray-Curtis similarities. Indirect gradient analysis was performed using Detrended Correspondence Analysis (DCA) and Local Nonmetric Multidimensional Scaling (LNMDS). Direct gradient analysis was carried out with Canonical Correspondence Analysis (CCA). The variation explained by each environmental variable was found and tested by using partial CCA and Monte Carlo permutation tests. Nonparametric correlation analysis (Kendall's τ) was performed between environmental parameters and DCA axes values, and between the environmental variables themselves. Correlation between environmental variables was also investigated by using Principal Component Analysis (PCA).

The analysed vegetation is representative for raised atlantic bogs. 25 vascular species, 49 bryophytes and 19 lichens were recorded in the 100 sample plots, giving a total of 93 species. The TWINSPAN classification divides the analysed sample plots into four groups: *Racomitrium lanuginosum* hummocks, *Sphagnum* hummocks, lawns and carpets.

The results of the DCA ordination of the frequency abundance data and the percentage cover data are identical. The gradient length of the first DCA axes of the frequency data is 3.6, and of the percentage data 3.8. Both axes have an eigenvalue of 0.42, explaining 19% of the total variation in species. In both abundance measurements, the first four DCA axes completely explain 33% of the variation in species.

The indirect gradient analysis reflects the hummock-hollow gradient along the first DCA axis, and the second axis is based on the variation in species due to different substrates and soil richness. Typical species of the hummocks are Vaccinium myrtillus, V. uliginosum, Arctostaphylos alpina, A. uva-ursi, Betula nana, Racomitrium lanuginosum and lichen species. The diversity of species is greatest on lawns. Important species here are Andromeda polifolia, Erica tetralix, Calluna vulgaris, Pinguicula vulgaris, Narthecium ossifragum, Trichophorum cespitosum, Carex rostrata, Eriophorum angustifolium, Dicranum leioneuron, Pohlia sphagnicola, Sphagnum austinii, S. rubellum, Mylia taylorii, Calypogeia sphagnicola, Riccardia latifrons and Ptilidium ciliare. Typical species of the carpets are Carex limosa, Sphagnum cuspidatum, S. compactum, S. lindbergii and Wamstorfia fluitans. The species ordination also shows that minerotrophic species such as Menyanthes trifoliata, Eriophorum angustifolium, Carex rostrata, C. lasiocarpa and Phragmites australis are restricted to relatively high scores on axis 1, and separated from oligotrophic species on axis 2.

The LNMDS ordination of the species frequency data shows the same gradients as in the DCA ordination, thus confirming the main structure in the data.

Using direct gradient analyses (CCA), the 'Depth to soil water table' is found to be the most important environmental variable for explaining the species variation. The second is the nutrient condition of the soil. The water table explains 10.3% of the variation, total nitrogen in peat 8.4%, base saturation 7.5%, H 6.7%, Ca 5.3%, Na 5.2% and pH 5.1%. Fe, P, Si, Mn, cation exchange capacity, Zn and S explain less than 5% each. The first CCA axis explains 13% of the variation. 6% is explained by axis two, 4% by axis three and only 2% by axis four. As much as 46% of the relationship between species and the environment is

explained by CCA axis 1. All four axes together explain 90%.

Correlation analysis of environmental variables in peat found positive correlations between Si, pH and Ca. 'Depth to water table', H, Zn and Fe are also positively correlated. Base saturation and N are negatively correlated with the variables 'depth to water table', Na, H, Fe and Zn.

The content of inorganic elements in mosses varies between species, even in the same genus. In environmental monitoring of bryophytes, samples from different species should not be mixed. *Racomitrium lanuginosum* generally shows lower mean values of inorganic elements than *Sphagnum* species, and the content of Ba, Mg, N and Sr increases in mosses, representing a gradient from hummock to hollow.

The pollution level in the mire system investigated at Havmyran is low compared with bogs further south in Europe.

9 Litteratur

- Aerts, R., Wallén, B. & Malmer, N. 1992. Growth-limiting nutrients in *Sphagnum*-dominated bogs subject to low and high atmospheric nitrogen supply. - J. Ecol. 80: 131-140.
- Aulio, K. 1980. Nutrient accumulation in *Sphagnum* mosses. I. A multivariate summarization of the mineral element composition of 13 species from an ombro-trophic raised bog. Ann. Bot. Fennici 17: 307-314.
- Aulio, K. 1982. Nutrient accumulation in Sphagnum mosses. II. Intra- and interspecific variation in four species from ombrotrofic and minerotrophic habitats. -Ann. Bot. Fennici 19: 93-101.
- Bakken, S. & Flatberg, K.I. 1995. Effekter av økt nitrogendeposisjon på ombrotrof myrvegetasjon. En litteraturstudie. - ALLFORSK Rapport 3: 1-63.
- Boatman, D.J., Hulme, P.D. & Tomlinson, R.W. 1975. Monthly determinations of the concentrations of sodium, potassium, magnesium and calcium in the rain and in pools on the Silver Flowe National Nature Reserve. - J. Ecol. 63: 903-912.
- Braak, C.J.F. ter 1986. Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67: 1167-1179.
- Braak, C.J.F. ter 1987a. The analysis of vegetation-environment relationships by canonical correspondence analysis. - Vegetatio 69: 67-77.
- Braak, C.J.F. ter 1987b. Ordination. S. 91-173 i Jongman, R.H.G., ter Braak, C.J.F & van Tongeren, O.F.R., red.. Data analysis in community and landscape ecology. -Pudoc, Wageningen..
- Braak, C.J.F. ter 1988. CANOCO a FORTRAN program for canonical community ordination by (partial) (detrended) (canonical) correspondence analysis, principal components analysis and redundancy analysis (version 2.1). -Technical report LWA-88-02. Agricult. Math. Group, Wageningen, The Netherlands.
- Braak, C.J.F. ter 1990. Update notes: CANOCO version 3.10. Agricult. Math. Group, Wageningen.
- Bruteig, I.E. 1996. Miljøovervaking Hitra. Epifyttvegetasjonen. Resultat frå referansekartlegging 1995. -ALLFORSK Rapport (under utarb.)
- Carr, M.R. 1990. Practical notes for using the computer programmes prepared for the training workshop on statistical treatment and interpretation of marine community data. - Plymouth Marine Laboratory, Plymouth.
- Clarke, B. 1991. Lecture notes for a training Workshop on multivariate analysis of benthic community data. -Univ. of Oslo, Oslo.
- Clymo, R.S. 1980. Preliminary survey of the peat-bog Hummell Knowe Moss using various numerical methods. - Vegetatio 42: 129-148.
- Conover, W.J. 1980. Practical nonparametric statistics. 2nd. ed. Wiley, New York.
- DNMI 1993a. Temperaturnormaler, normalperiode 1961-1990. - DNMI Rapport 02/93 Klima. 63 s.

- DNMI 1993b. Nedbørnormaler, normalperiode 1961-1990. -DNMI Rapport 39/93 Klima. 63 s.
- Eilertsen, O. & Fremstad, E 1994. Miljøovervåking Tjeldbergodden, jord- og vegetasjonsundersøkelser. - NINA Oppdragsmelding 278: 1-30.
- Eilertsen, O. & Fremstad, E. 1995. Miljøovervåking på Tjeldbergodden og Terningvatn. Jord- og vegetasjonsundersøkelser 1993-94. - NINA Oppdragsmelding 391: 1-38.
- Eilertsen, O. & Often, A. 1994. Terrestrisk naturovervåking. Vegetasjonsøkologiske undersøkelser av boreal bjørkeskog i Gutulia nasjonalpark. - NINA Oppdragsmelding 285: 1-69.
- Eilertsen, O. & Pedersen, O. 1989. Virkning av nedveiing og artsfjerning ved DCA-ordinasjon av vegetasjonsøkologiske datasett. - Univ. Trondheim, Vitensk. mus. Rapp. bot. Ser. 1988,1: 5-18.
- Eilertsen, O., Økland, R.H., Økland, T. & Pedersen, O. 1990. Data manipulation and gradient length estimation in DCA ordination. - J. Veg. Sci. 1: 261-270.
- Faith, D.P., Minchin, P.R. & Belbin, L. 1987. Compositional dissimilaritiy as a robust measure of ecological distance. - Vegetation 69: 57-68.
- Fenstad, G.U., Walløe, L. & Wille, S.Ø. 1977. Three tests for regression compared by stochastic simulation under normal and heavy tailed distribution of errors. -Scand. J. Statist. 4: 31-34.
- Flatberg, K.I. 1970. Nordmyra, Trondheim. Aspekter av flora og vegetasjon I. - Cand.real.thesis. Univ. Trondheim (upubl.).
- Fremstad, E. & Eilertsen, O. 1994. Heigråmose (*Racomitrium lanuginosum*) som biomonitor på nitrogenforurensning. - NINA Oppdragsmelding 239: 1-21.
- Fremstad, E. & Elven, R. 1987. Enheter for vegetasjonskartlegging i Norge. - Økoforsk Utredning 1987,1.
- Frisvoll, A., Elvebakk, A., Flatberg, K.I. & Økland, R.H. 1995. Sjekkliste over norske mosar. Vitskapleg og norsk namneverk. - NINA Temahefte 4: 1-104.
- Greven, H.C. 1992. Changes in the moss flora of the Netherlands. Biol. Conserv. 59: 133-137.
- Hill, M.O. 1973. Diversity and evenness: A unifying notation and its consequences. - Ecology 61: 225- 236.
- Hill, M.O. 1979a. DECORANA A FORTRAN program for detrended correspondence analysis and reciprocal averaging. - Cornell Univ., Ithaca, New York.
- Hill, M.O. 1979b. TWINSPAN a FORTRAN program for arranging multivariate data in an ordered two-way table by classification of individuals and attributes. - Cornell University, Ithaca, NewYork. 90 s.
- Hill, M.O. & Gauch, H.G. 1980. Detrended correspondence analysis: an improved ordination technique. - Vegetatio 42: 47-58.
- Hornung, M., Sutton, M.A. & Wilson, R.B. 1995. Mapping and modelling of critical loads for nitrogen: a workshop report. - Institute of Terrestrial Ecology, Edinburgh Research Station, U.K. 207 s.
- Jauhiainen, J., Vasander, H. & Silvola, J. 1992/93. Differences in responce of two *Sphagnum* species to elevated CO_2 and nitrogen input. - Suo 43: 211-215.

- Jensén, S. 1978. Influences of transformation of cover values on classification and ordination of lake vegetation. Vegetatio 37: 19-31.
- Kershaw, K.A., & Looney, J.H.H. 1985. Quantitative and dynamic Plant Ecology. Edward Arnold.
- Knutsen, S., Aarrestad, P.A. & Skjelkvåle, B.L. 1996. Konsekvenser av utslipp til luft fra gasskraftverk, Tjeldbergodden. - NILU OR (under utarb.).
- Knutsen, S. & Johnsrud, M. 1996. Måleprogram for førundersøkelser på Tjeldbergodden. Hovedkomponenter og tungmetaller i nedbør 1994. - NILU OR (under utarb.).
- Krog, H., Østhagen, H. & Tønsberg, T. 1994. Lavflora. Norske busk- og bladlav. - Universitetsforlaget, Oslo.
- Kruskal, J.B. 1964a. Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrica 29: 1-27.
- Kruskal, J.B. 1964b. Nonmetric multidimensional scaling: a numerical method. - Psychometrica 29: 115-129.
- Kruskal, J.B., Young, F.W. & Seery, J.B. 1973. Nonmetric multidimensional scaling: a numerical method. -Psychometrica 29: 1-27.
- Lee, J.A., Press, M.C., Woodin, S. & Ferguson, P. 1987. Responses to acidic deposition in ombrotrophic mires in the U.K. - S. 549-560 i: Hutchinson, T.C. & Meema, K.M., red. Effects on atmospheric pollutants on forests, wetlands and agricultural ecosystems. Springer Verlag, Berlin.
- Lid, J. & Lid, D.T. 1994. Norsk flora. Det norske samlaget. Oslo.
- Lütke Twenhöven, F. 1992. Competition between two Shagnum species under different deposition level. - J. Bryol. 17: 71-80.
- Maarel, E. van der 1979. Transformation of coverabundance values in phytosociology and its effect on community similarity. - Vegetatio 39: 97-114.
- Malmer, N. 1962. Studies on mire vegetation in the Archaean area of southwestern Götaland. I. Vegetation and habitat conditions on the Åkhult mire. -Opera Bot. 7: 1-322.
- Malmer, N. 1988. Patterns in the growth and the accumulation of inorganic constituents in the *Sphagnum* cover on ombrotrophic bogs in Scandinavia. - Oikos 53: 105-120.
- Malmer, N. 1993. Mineral nutrients in vegetation and surface layers of *Sphagnum* dominated peat-forming systems. - Adv. Bryol. 5: 223-248.
- Minchin, P. 1986. How to use ECOPACK: an ecological database system. CSIRO Inst. Biol. Res. Div. Wat. Land Res. Tech. Mem. 86,6: 1-138.
- Minchin, P. 1987. An evaluation of the relative robustness of techniques for ecological ordination. - Vegetatio 69: 89-107.
- Moen, A. 1983. Myrundersøkelser i Sør-Trøndelag og Hedmark i forbindelse med den norske myrreservatplanen. -K. norske Vidensk. Selsk. Mus. Rapp. Bot. Ser. 1983,4: 1-138.
- Moen, A. & Odland, A. 1993. Vegetasjonsseksjoner i Norge. -Univ. Trondheim, Vitensk. mus. Rapp. Bot. Ser. 1993,2: 37-53.

- Moen, A. & Singsaas, S. 1994. Excursion guide for the 6th IMCG field symposium in Norway 1994. - Univ. Trondheim, Vitensk. mus. Rapp. Bot. Ser. 1994, 2: 1-159.
- Ogner, G., Opem, M., Remedios, G., Sjøtveit, G. & Sørlie, B. 1991. The chemical analysis program of the Norwegian Forest Research Institute, 1991. - NISK, Ås. 21 s.
- Pakarinen, P. 1981. Metal content of ombrotrophic Sphagnum mosses in NW Europe. - Ann. Bot. Fennici 18: 281-292
- Pakarinen, P. & Tolonen, K. 1977. Nutrient contents of *Sphagnum* mosses in relation to bog water chemistry in nortern Finland. - Lindbergia 4: 27-33.
- Pedersen, O. 1988. Biological data program/PC. Version 1.01. Brukerveiledning. - VegeDataConsult, Oslo.
- Press, M.C., Woodin, S.J. & Lee, J.A. 1986. The potential importance of an increased atmospheric nitrogen supply to the growth of ombrotrophic *Sphagnum* species. New Phytol. 103: 45-55.
- Shannon C.E. & Weaver, W. 1949. The Mathematical Theory of Communication. - University Illinois Press, Urbana, IL.
- Sigmond, E.M.O., Gustavson, M. & Roberts, D. 1984. Berggrunnskart over Norge. M. 1: 1 million. - Norges geologiske undersøkelse.
- Sjörs, H. 1947. Myrvegetationen i övre Långanområdet i Jämtland. - Ark. Bot. k. svenska Vetenskakad. 33A: 6: 1-96.
- Sjörs, H. 1948. Myrvegetation i Bergslagen. Acta Phytogeogr. Suecica. 21: 1-299.
- Sjörs, H. 1950. Regional studies in North Swedish mire vegetation. Bot. Not. 1950: 173-322.
- Sjörs, H. 1983. Mires of Sweden. S. 69-94 i Gore, A.J.P., red. Mires: swamp, bog, fen and moor. - Ecosystems of the world. 4B,.
- Skogen, A. 1969. Trekk av noen oseaniske myrers vegetasjon og utvikling. I: Myreres økologi og hydrologi. -IHD. rapp. 1: 88-95.
- Skogen, A. 1970. Betenkning vedrørende eventuelt myrreservat på Hitra, Sør-Trøndelag. - Trondheim, 6 s. (stensiltrykk), 1pl.
- Smartt, P.F.M., Meacock, S.E. & Lambert, J.M. 1974a. Investigations into properties of quantitative vegetation data. - J. Ecol. 62: 735-759.
- Smartt, P.F.M., Meacock, S.E. & Lambert, J.M. 1974b. Investigations into properties of quantitative vegetation data. II. Further data comparisons. - J. Ecol. 64: 47-78.
- Smilauer, P. 1992. CanoDraw User's Guide, version 3.0. Microcomputer Power, Ithaca, New York, USA.. 118 s.
- STSC Inc. 1991. Statistical prosedures reference manual. -Statgraphics Inc., Rockville, USA.
- Stuart, A. 1956. The efficiencies of test of randomness against normal regression. J. Am. Stat. Ass. 51: 285-287.
- Thomassen, J. (red.) 1995. Miljøovervåking Tjeldbergodden. Etablering av overvåkingsprogram 1993-1994.
 - NINA Oppdragsmelding 376: 1-20.

- Tørseth, K. & Pedresen, U. 1994. Deposition of sulphur and nitrogen components in Norway 1988-1992. - NILU OR 16/94. 33 s.
- Tybirk, K., Bak, J. & Henriksen, L.H. 1995 Basis for Mapping of Critical Loads. - Nordic Council of Ministers, Copenhagen. TemaNord 1995: 510. 69 s.
- Westhoff, V. & Maarel, E. van der 1978. The Braun-Blanquet approach. - I: Whittaker, R.H., red. Classification of plant communities. Junk, The Hague.
- Wojtun, B. 1994. Element Contents of *Sphagnum* Mosses of Peat Bogs of Lower Silesia (Poland). - The Bryologist 97(3): 84-295.
- Økland, R.H. 1986. Rescaling of ecological gradients. I. Calculation of ecological distance between vegetation stands by means of their floristic composition. - Nord. J. Bot. 6: 651-660.
- Økland, R.H. 1989a. Hydromorphology and phytogeography of mires in inner Østfold and adjacent part of Akershus, SE Norway, in relation to SE Fennoscandian mires. - Opera Bot. 97: 1-122.
- Økland, R.H. 1989b. A phytoecological study of the mire Northern Kisselbergmosen, SE. Norway. I. Introduction, flora, vegetation and ecological conditions. -Sommerfeltia 8: 1-172.
- Økland, R.H. 1990a. A phytoecological study of the mire Northern Kisselbergmosen, SE Norway. II. Indentification of gradients by detrended (canonical) correspondence analysis. - Nord. J. Bot. 10: 79-108.
- Økland, R.H. 1990b. Vegetation ecology: theory, methods and applications with reference to Fennoscandia. -Sommerfeltia Suppl. 1: 1-233.
- Økland, R.H. & Eilertsen, O. 1993. Vegetation environment relationships of boreal coniferous forests in the Solhomfjell area, Gjerstad, S Norway. - Sommerfeltia 16: 1-254.

Vedlegg 1

Oversikt over artsforkortelser, vitenskapelige navn og norske artsnavn.- Survey of species abbreviations, scientific names and Norwegian names.

ANDR POL	Andromeda polifolia	kvitlyng
ARCT ALP	Arctostaphylos alpinus	rvpebær
ARCT UVA	Arctostaphylos uva-ursi	miølbær
BETU NAN	Betula nana	dverabiørk
CALL VIII	Calluna vulgaris	røssivna
EMPE NIG	Empetrum nigrum	krekling
FRIC TET	Frica tetralix	klokkelvna
VACC MVR	Vaccinium myrtillus	hlåbær
VACC VIT	Vaccinium vitis-idaea	tyttebær
VACC VII		ly lebel
DROS ANG	Drosera anglica	smalsoldogg
DROS ROT	Drosera rotundifolia	rundsoldogg
MENY TRI	Menyanthes trifoliata	bukkeblad
NART OSS	Narthecium ossifragum	rome
PING VUL	Pinguicula vulgaris	tettegras
RUBU CHM	Rubus chamaemorus	molte
VA OX.MI	Vaccinium oxycoccus ssp. microcarpum	småtranebær
C DIOICA	Carex dioica	særbustarr
C LASIOC	Carex lasiocarpa	trådstarr
C LIMOSA	Carex limosa	dystarr
C PAUCIF	Carex pauciflora	sveltstarr
C ROSTRA	Carex rostrata	flaskestarr
ER AN.AN	Eriophorum angustifolium ssp. angustifolium	duskull
ERIO VAG	Eriophorum vaginatum	torvull
PHRA AUS	Phragmites australis	takrør
TRIC CES	Trichophorum cespitosum	bjønnskjegg
ANAS MTN	Anastrophyllum minutum	tråddraugmose
ATTLA DAL	Aulacompium nalustre	myrfiltmose
DICP BED	Dicranum bergeri	sveltsigd
DICR GRO	Dicranum groenlandicum	nutesiad
DICR LET		akssind
DICR SCP	Dicranum scoparium	ribbesiad
HATO CAL	Hylocomium splendens	etasiemose
HYPN .TITT	Hypnum iutlandicum	heiflette
TUES BYD	Loeskynnum badium	messingmose
DIFIL COL	Pleurozium schreberi	furumose
POUL ODU	Poblia snhagnicola	torvnikke
DOLY COM	Polytrichum commune	storbiørnemose
POLI COM		filthiørnemose
PULI STR	Poryalentin suletion Decomitrium lanuginosum	heigråmose
RACU LAN	Devtidiadelabus largus	kvetkransmoso
KHIT LOR	Chynulauciphus Ioleus Sobagnum austinii	kvetton/moso
SPH AUST	Spriagnum austilli Sabaanum aaniilifalium	furutonymose
SPH CAPI	Sphagnum caphinolium	stiutonymose
SPH COMP		
SPH CUSP		vassiorvinose
SPH FUSC	Spnagnum tuscum	
SPH LINB	Spnagnum lindbergii	
SPH MAGE	Spnagnum magellanicum	kjøtt-torvmose
SPH MAJU	Spnagnum majus	iurvtorvmose
SPH MOLL	Sphagnum molle	tiøyelstorvmose

© Norsk institutt for naturforskning (NINA) 2010 http://www.nina.no Vennligst kontakt NINA, NO-7485 TRONDHEIM for reproduksjon av tabeller, figurer, illustrasjoner i denne rapporten.

SPH PAPI	Sphagnum papillosum
SPH PULC	Sphagnum pulchrum
SPH RUBE	Sphagnum rubellum
SPH SUBN	Sphagnum subnitens
SPH TENE	Sphagnum tenellum
WARN FLU	Warnstorfia fluitans
BARB KUN	Barbilophozia kunzeana
BARB LYC	Barbilophozia lycopodioides
CALY NEE	Calypogeia neesiana
CALY SPH	Calypogeia sphagnicola
CEPH BIC	Cephalozia bicuspidata
CEPH CON	Cephalozia connivens
CEPH/LUN	Cephalozia lunulifolia/loitlesbergeri
CEPL DIV	Cephaloziella divaricata
CEPL SPI	Cephaloziella spinigera
CEPHLLAZ	Cephaloziella spp.
CLA&GYMN	Cladopodiella fluitans/Gymnocolea inflata
KURZ PAU	Kurzia pauciflora
LOPH EXC	Lophozia excisa
LOPH VEN	Lophozia ventricosa
MYLI ANO	Mylia anomala
MYLI TAY	Mylia taylorii
ODON SPH	Odontoschisma sphagni
PTIL CIL	Ptilidium ciliare
RICA LAT	Riccardia latifrons
CETR ISL	Cetraria islandica
CLAD ARB	Cladonia arbuscula
CLAD CAN	Cladonia carneola
CLAD COC	Cladonia coccifera
CLAD COR	Cladonia cornuta
CLAD GRI	Cladonia gracilis
CLAD MER	Cladonia merochlorophaea
CLAD POR	Cladonia portentosa
CLAD/RAN	Cladonia rangiferina/stygia
CLAD SQU	Cladonia squamosa
CLAD STE	Cladonia stellaris
CLAD SUF	Cladonia subfurcata
CLAD SUL	Cladonia sulphurina
CLAD UNC	Cladonia uncialis
COEL ACU	Coelocaulon aculeatum
HYPG PHY	Hypogymnia physodes
OCHR FRI	Ochrolechia frigida
PARM SUL	Parmelia sulcata
SPHA GLO	Sphaerophorus globosus

vortetorvmose fagertorvmose raudtorvmose blanktorvmose dvergtorvmose vassnøkkemose myrskjeggmose gåsefotskjeggmose torvflak sveltflak broddglefsemose tråkleglefsemose myr-/sveltglefsemose flokepistremose kluftpistremose pistremose-arter myrsnutemose/torvdymose sveltfingermose rabbeflik grokornflik myrmuslingmose raudmuslingmose sveltskovlmose bakkefrynse sveltsaftmose islandslav lys reinlav bleikbeger grynrødbeger skogsyl syllav brunbeger kystreinlav grå reinlav/svartfotreinlav fnaslav kvitkrull fjellgaffellav fausklav pigglav groptagg vanlig kvistlav bristlav brun korallav

© Norsk institutt for naturforskning (NINA) 2010 http://www.nina.no Vennligst kontakt NINA, NO-7485 TRONDHEIM for reproduksjon av tabeller, figurer, illustrasjoner i denne rapporten.

Vedlegg 2

Artenes si	máru	itefre	ekve	ns i	100	anal	yser	uter.	- Sp	ecie	es fre	eque	ncy	ın 10	10 sa	mple	e plo	ts.							
Analyserute Sample plot	A 111	A 116	A 122	A 125	A 129	A 211	A 214	A 219	A 224	A 229	A 310	A 316	A 320	A 324	A 327	A 410	A 413	A 418	A 420	A 428	A 513	A 517	A 521	A 524	A 527
ANDR POL		56	33	22	11			44	89	56			67	22	11	78	100	89	78	67	67	100	89	100	67
ARCT ALP																									
ARCT UVA																									
BETU NAN	89	100		100		44		44		100	100		67	56				33							
CALL VUL	78		100	100	89	22	67	89	78	100	22	56	89	44	22	100	100	100	100	11	44	89	100	67	89
EMPE NIG	100	33	78	100	100	100	33	100	44	78	100	33	100	89	22	11				33		11			
ERIC TET			22													•••		89	33	11	67	•••			67
VACC MYR								ġ													•				
VACC VIT												•	•		•										
DROS ANG																							22	11	11
DROS ROT	•	•	•	•	•	•	•	•	•	22	•	•	•	•	•	11	44	33	۵۵	33	۵۵	56	100	89	44
MENY TRI	•	•	•	•	•	•	•	·	•		•	•	•	•	•	•••	•••	00		00	•••	00	100	00	••
NART OSS	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	67	89	•	11	. 11	. 11
PING VUL	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	07	00	•	22		••
RUBU CHM	•	•	•	•	•	•	•	•	•	•	•	11	•	•	11	•	•	•	•	•	•	•	11	•	22
VA OX.MI	•	•	•	•	•	•	•	11	•	•	•		•	•		•	•	•	33	•	11	•	11	•	
C DIOICA													-												
C LASIOC																									
C LIMOSA					_																				
C PAUCIF								22	56	44						22	22	11	56	44			89		
C ROSTRA																									
ER AN.AN																									
ERIO VAG	100	100	100	100	100	100	100	100	100	100	100	44	100	100	100	100	100	100	100	100	78	89	100	100	78
PHRA AUS												_													· .
TRIC CES	•	•	•	•				67	78							11	67	89	11	100	100	100	100	100	89
ANAS MIN																									
AULA PAL																									
DICR BER																	•								
DICR GRO																									
DICR LEI																									
DICR SCP															11										
HYLO SPL														11	33										
HYPN JUT	11	11	56	11		11																			
LOES BAD																									
PLEU SCH	22	89	78	89	56	44		22	33	11	100	22	89	67	56	33	56		11						
POHL SPH										22							11								
POLY COM												33													
POLY STR																			44	22	•				44
RACO LAN	100	100	89	33	100	100	100	89	78	100	100	100	100	100	100	100	78	100	67						
RHYT LOR			•		•																				
SPH AUST				•												22	44		89	56	89	11	67	44	67
SPH CAPI	11		•																						•
SPH COMP	-			,		-																			
SPH CUSP	•	•	•	٠	•	•	•	•	•	•	•	•	•	•					•						
SPH FUSC	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	
CDU I TND	•	•	•	•	•	•	•	·	•	•		•	•	•	•	•	•	•	•	•	•	•	•		·
SPR LIND	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	EC.	•	100			EC		
SPH MAGE	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	90	•	100	33	100	50	09	-+-+

© Norsk institutt for naturforskning (NINA) 2010 http://www.nina.no Vennligst kontakt NINA, NO-7485 TRONDHEIM for reproduksjon av tabeller, figurer, illustrasjoner i denne rapporten.

Analyserute	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	 A
Sample plot	111	116	122	125	129	211	214	219	224	229	310	316	320	324	327	410	413	418	420	428	513	517	521	524	527
SPH MAJU																									
SPH MOLL																									
SPH PAPI										33							33	33	22	78	67	100	56	100	89
SPH PULC																									
SPH RUBE	•							67	56	33						11	56	33	89	100	100	100	100	100	89
SPH SUBN	•																			22					56
SPH TENE	•								67								22	44	33	100	100	100	89	100	89
WARN FLU	•	•	•	•	•	•	•	•	•	•	•		•	•				•	•	•	•	•	•	•	•
BARB KUN																									•
BARB LYC	•		•	•	•	•	•		•				-					•	•	•					
CALY NEE	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•		•	•	•					•
CALY SPH	•	•	•	•	•	•	•	•	22	11	•	•	•	•	•	•	22	•	56	11	11	11		11	11
CEPH BIC	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	33	•		•	33	•	•	•	11
CEPH CON	•	•	•	•	•	•	•	•	70		•	•	•	•	•				11						
CEPI, DIV	•	•	•	•	•	•	•	•	10	22	•	•	·	•	•	22	33	90	44	89	44	33	33	44	44
CEPL SPI	·	•	•	•	•	•	•	•	•	. 11	•	٠	•	٠	٠	٠	•	•	•	•	•		•	•	•
CEPHLLAZ	•	•	•	•	•	•	•	•	•		•	•	•	•	·	•	•	•	•	•	·	•	•	•	·
CLA&GYMN	•	•	•	•	•	•	•	•	22	•	•	•	•	•	•	•	•	•	•		56	78	. 22	100	67
KURZ PAU		•			÷	•		11	89	11		•		•	•	•	11	44	11	22	89	89	100	78	89
LOPH EXC																									
LOPH VEN	11															•									
MYLI ANO								11	44								33	44	33	11	22	44	56	11	
MYLI TAY																									
ODON SPH	11								78							22	44	56	44	22	78	78	100	100	100
PTIL CIL						22					11		11			22	44		22						44
RICA LAT	•	•	•	•	•	•	•	•		•	•	•	•	•	•		22	33	•	11	33	22	22	11	33
CETR ISL							•		78	22							44	78	33	33	33		89	11	33
CLAD ARB	67	67	100	100	100	89	100	100	89	100	100	89	67	56	100	89	100	100	89	22	33				22
CLAD CAN	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•			•	· •
CLAD COC	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	• •	•	•	•
CLAD COR	•	•	•	•	•			•	•		22		•				•		•	•	•	•	•	•	•
CLAD GRI	٠	•	•	•	•	44	22	•	•	90	22	89	•	33	67	07	•	22	·	•	•	•	•	•	•
CLAD MER	67				00			00	67		70		67	. 67		20	80		วว	•	. 11	•	•	•	11
CLAD/RAN	33	33	100	100	67	80	100	78	56		10	67	07	22	67	100	80	22	22 AA	•	11	•	•	•	
CLAD SOU	55	•	100		07	03		70	50	•	•	22	•	~~	07	100	05	55	11	•		•	•	•	•
CLAD STE	•	•	•	·	•	•	•	•	•	•	•	66	•	•	•	•	•	33	• •	•	•	•	•	•	•
CLAD SUF	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	33	11	•	•	•	•	11	•
CLAD SUL	•	•	•	•	•	•	•	•			•	11									•	•	•	•••	•
CLAD UNC	33		22	11		67	100	89	67	100		100		33	11	100	44	78	22	11	44		67	22	33
COEL ACU						- ·			11			22		-		-			33						
HYPG PHY		56		•		•																			
OCHR FRI																		•							•
PARM SUL		22																•							
SPHA GLO																									

.

© Norsk institutt for naturforskning (NINA) 2010 http://www.nina.no Vennligst kontakt NINA, NO-7485 TRONDHEIM for reproduksjon av tabeller, figurer, illustrasjoner i denne rapporten.

ANDR POL 89 78 89 89 44 100 10 ARCT ALP	00 78 1 	100 100	56 1	1 33	22	22	11									
ANDK POL 89 78 89 89 44 100 10 ARCT ALP ARCT UVA	78 1 	100 100 · · ·	56 1	1 33	22	22	11						100			-
ARCT ALP	 	· ·	•				••	•	44	•	•		100	67	33	67
ARCT UVA	· · · · · · 00 100 1				•	•	•	•	89	·	•	11	89	•	89	100
T) T) (T) T) T) T) T) T) T) T) T	 00 100 1		•	• •	•	•	•	•	•	•	100	•	•	•	•	•
BETU NAN	00 100 1	• •	22	. 56	56	100	44					67	33		100	33
CALL VUL 100 100 100 100 22 100 10		100 100	100 10	00 100	100	100	100	33	100	11	89	89	100	100	78	100
EMPE NIG . 56 11	. 22	11 .			•	89	100	100	100	56	89	100	100	89	100	100
ERIC TET 78 11 33 56 11 . 10	. 00	. 33	100 2	22 78	100	22										
VACC MYR					•											
VACC VIT	• •		•	• •	•	•	44	•	•	•	•	78	78	•	56	•
DROS ANG 11 33																
DROS ROT 78 44 44 22 89 7	78 11	56 56	67 1	1 44	33	56	•	•	22	•	•	•	56	•	11	•
MENY TRI			0	11	78		•	•		•	•	•		•	•••	•
NART OSS 100 44 11 100 2	· ·		100 10	0	100	•	•	•	•	·	•	•	•	89	•	•
PING VIII.			100 10		100	•	•	•	•	•	•	•	•	00	•	•
	• •		•	• •	•	•		•	•	•	•	•	•	•	•	•
	• •	. 22	•	• •	•	•	11	•	•	•	•	•	•	•	•	•
		. 11	·	• •	•	•	•	•	•	•	•	٠	•	•	•	•
C DIOICA			. 4	4 100					•							
C LASIOC			100 10	00 100	89	100										
C LIMOSA																
C PAUCIF 44 . 67 5	56.	89 11							22							
C ROSTRA 11 11 . 3	33.	33.	. 1	1 11	22	78										
ER AN.AN			. 4	4.												
ERIO VAG 100 100 100 100 33 100 10	00 100 1	100 100		. 11			100	100	100	100	11	100	100	100	100	100
PHRA AUS			56 6	57 33	22	11										
TRIC CES 100 22 100 89 10	00 22	67 100	100 10	00 11	100	•	•			•	•			•		•
ANAS MIN					•	•			11							
AULA PAL						56										
DICR BER							•						11			
DICR GRO													11			
DICR LEI . 22 11			. 1	11.	22											
DICR SCP									22				11			
HYLO SPL						11	89					56	33		67	
HYPN JUT 11													22		33	89
LOES BAD			22 2	22 22	100											
PLEU SCH 78 22 1	11 33	11		. 100		67	100	89	100		22	100	100	78	67	100
POHL SPH 67 22		22							22	_			67		-	
POLY COM	• •		•		•	•				-						
POLY STR 22 44	• •	• •	•		•	89	•	•	•	•	•	•	•	•	•	•
PACO LAN 90 100 100 78 3				11 78	22	67	100	100	100	100	80	100	44	100	•	100
	55 69			11 70	22	33	100	100	100	100	03	100		100	•	100
CDU NUST 400 00 EC 22 100 1			100 3		•	33	•	•	•	•	•	•	•	•	•	•
SPH AUSI 100 89 56 . 33 100 1	11 22	33 .	100 3	55 11	•		•	•	•	•	•			•	00	•
	• •	• •	•	• •	•	•	•	•	•	•	•	33	09	•	09	•
	• •		•	• •	•	•	•	•	·	•	•	•	•	•	•	•
SPH CUSP	• •	• •	•	• •	•	•	•	•	•	•	•	•	•	•	•	•
SPH FUSC	• •	• •	•	• •	•	·	•	•	-	•	•	•	•	•	•	•
SPH LINB	• •	• •	•		•	•	•	•	•	•	•	•	•	•	•	•
SPH MAGE 11	44.	. 22	•	· ·	•	•	٠	•	•	•	•	•		•	•	•
SPH MAJU			•		•	•	•	•	•	•		•	•	•	•	•
SPH MOLL			•					•	•	•	•	•		•	•	•
SPH PAPI 100 . 22 33 100 56 7	78.1	100 100	44 7	78.	56				•							
SPH PULC																

57

© Norsk institutt for naturforskning (NINA) 2010 http://www.nina.no Vennligst kontakt NINA, NO-7485 TRONDHEIM for reproduksjon av tabeller, figurer, illustrasjoner i denne rapporten.

Analyserute Sample plot	A 611	A 616	A 619	A 624	A 628	A 713	A 716	A 720	A 723	A 727	A 810	A 813	A 816	A 824	A 829	В 112	В 116	В 120	В 126	В 129	В 211	В 214	В 217	В 221	B 228
										_															
SPH RUBE	78	67	67	33	33	100	100	22	100	100	89	100	89	67	89	•	•	33	•	•	•	•	33		
SPH SUBN	•	•	•	•	44	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•		
SPH TENE	100	•	11	•	100	100	89	22	78	100	89	•	•	•	•	•	•	•			•	•	•		
WARN FLU	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•		•
BARB KUN																									
BARB LYC																									
CALY NEE																						22			
CALY SPH	11	11	22		11		44		11									33				33	11		
CEPH BIC	44			11	11	11								11											-
CEPH CON																									
CEPH/LUN	89	33	56		78	78			22	67	67	11	33	67	11			33				56	11	22	
CEPL DIV			•••																•	•			• •		
CEPL SPI				•			11						•			•	•	11	•	•	•	22		•	
CEPHLLAZ	•	•	•	•	•	•	••	•	•	•	•	•	•	•	•	•	•	••	•	•	•		•	•	•
CLA&GYMN	78	•	•	•	100		22	•	22	78	•	•	•	. 11	•	•	•	•	•	•	•	•	•	•	•
KURZ PAU	100	44	44		33	100	67	11	100	100	100	100	56	67	•	•	•	22	•	•	•	22	11	•	•
LOPH EXC		•••	• •	•			•••	••						0.	•	•			•	•	•		• •	•	
LOPH VEN				11			•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
MYLI ANO	56	44	56	•••	•	44	44	22	89	•	•	•	•	•	·	•	•	22	•	·	•	67	•	67	•
MYLI TAY				•	•	•••				•	•	•	•	•	•	•	•	33	•	•	•	44	11	0.	•
ODON SPH	100	•	۵۵	22	67	67	100	22	89		100	100	78	100	89	•	•	00	•	•	•		11	•	•
PTIL CIL	22	۵۵	-1-1		0,	07	33	67	11	44	22	11	10	100	11	•	•	•	•	•	•	33		•	•
RICA LAT	67	22	مم	11	•	78	00	0,	22	22	11		•	11		•	•	•	•	•	•	00	·	•	•
	0.		••	••	•		•	•			••	•	•	••	•	•	•	•	•	•	•	•	•	•	•
CETR ISL							22										33	11	100	78					
CLAD ARB	22	56	89	100		33	89	100	67	22	44	33	78	100	56	78	100	100	100	100	89	89	100	•	100
CLAD CAN		•••	•••		•				•••		••	•••			•••									•	
CLAD COC	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
CLAD COR	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
CLAD GRI	•	11	•	•	•	•	•	22	•	•	•	•	11	•	•	•	44	44	56	56	•	22	22	•	33
CLAD MER	•	••	•	•	•	•	•		•	•	•	•	••	•	•	•	••	••	00	00	•	22		•	00
CLAD POR	•	78	100	89	•	. 11	78	100	22	•	33	•	78	22	56	56	100	56	100	89	78	78	67	•	100
CLAD/RAN	•	22		22	•	22		44	11	22		•	22		22	56	100	00	89	100		78	78	22	80
CLAD SOU	·	£	•		•		•	•••	••		•	·		•		00	100	•	00	100	•	10	10	£ £	00
CLAD STE	•	·	•	·	•	·	•	•	•	•	•	•	•	·	11	•	•	•	•	•	•	·	•	•	•
CLAD SUF	. 11	•	. 11	•	•	33	11	11	•	22	22	•	•	•	••	•	•	•	. 11	•	•	•	11	•	•
CLAD SUL		•		·	•	00	••		•	22	"	•	•	•	•	•	•	•		•	•	•		•	•
CLAD UNC	. 22	. 22	78	56	•	89	67	67	78	11	33	33	. 22	•	•	22	100	89		89	•	89	78	•	78
COEL ACU	~~	"	10	00	•	55	57	57	.0		55	50	- <u>-</u>	•	•	<u> </u>		55	22	22	٠	22	10	•	, 0
HYPG PHY	•	·	•	•	·	·	•	•	•	•	•	•	•	•	•	•	•	•		"	11	22	•	•	•
OCHR FRI	·	•	•	•	·	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•
PARM SUL	·	·	·	•	·	·	•	٠	·	•	•	•	•	•	•	•	•	•	•	•	11	•	•	•	•
SPHA GLO	·	•	•	•	•	·	•	•	·	•	•	•	•	•	•	•	•	11	•	·	• •	•	•	•	•
	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	

_

Г

Analyserute	В	В	В	В	в	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	С	С	С	С	С
Sample plot	311	314	319	323	328	411	414	418	423	427	510	513	516	526	529	611	614	619	622	627	110	114	118	121	128
ANDR POL	89	78	78	78		89	22	56	100	89	100	100	89	44	100	56	33	100	56	67		100	78		56
ARCT ALP																				•.					
ARCT UVA																			•	•	•	•	-	•	•
BETU NAN			44						22		22	44	33		33	56	67	100	22	78		78	11	•	11
CALL VUL		56	100	56		100		22	100	100	89	100	100	11	100	89	33	56	100	44	100	100	100		100
EMPE NIG	•				•	56	•		44	33		44	22	• •		100	100	100	100	100	100	100		100	67
ERIC TET	44	100	100	67	33	•••	•		•••	67	78	••		22	•								44		0.
VACC MYR		100	100	0,		•	•	•	•	0.		•	•		•	56	78	100	•	89	•	•		•	•
VACC VIT	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	00	10		•	00	•	•	•	•	•
	•	•	•	•	•	•	•	•	•	•	•	•	•	·	•	•	•	•	•	•	•	•	•	·	•
DROS ANG	22			22	44			89					11	78	22										
DROS ROT	78	33	56	89		89		33	44	11	89	56	100	11	78		-			56	67	22		22	33
MENY TRI				•••	•		•	•••	•••	•••	•••			•••		•	•	•	•		•.		·		•••
NART OSS	100	78	56	67	44	·		•	11	•	67	•	•	56	56	•	•	•	•	•	•	•	•	•	·
PING VUL				0.	••	·		•	••		0.	•	•			•	•	•	•	•	•	•	11	·	22
RUBU CHM	•	•	•	•	•	. 11	•	11	11	22	•	33	. 11	•	11	•	•	•	33	33	89	22	••	56	22
VA OX.MI	•	22	•	•	•		•	•••	• •		•	22	33	•	•••	•	•	•	00	67	00		•	00	6 6
	•		•	•	•	•	•	•	•	•	•		00	•	•	•	•	•	•	0.	•	•	•	•	·
C DIOICA																									
C LASIOC	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	
C LIMOSA	•	•	•	•	78	·	78	44	•	•	•	•	•	44	•	•	•	•	•	•	•	•			
C PAUCIF	•	•	•	78		·			•		44	33	•	•••	33	•	•	•	•		•		44	į	11
C ROSTRA	•	•	•		•	·		•	•	·			•			•	•		•	·	•				
ER AN.AN	•	•	•	•					•		•		•				•								
ERIO VAG	100	100	100	100	89	100	89	100	100	100	89	100	100	78	100	100	100	100	100	100	100	100	100	100	100
PHRA AUS												100													
TRIC CES	100		100	100	67	100	78	100	100	78	22	•	100	89	89	•	•	•	•	•	•	•	22	•	33
	100	100	100	100	0.	100			100			•	100	00		•	•	•	•	•	•	•		•	
ANAS MIN																									
AULA PAL	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	33	•	•	•	•	•	•
DICR BER	•	•	33	•	•	. 11	•	•	•	•	•	•	•	•	•	•	•	•	00	•	•	•	•	•	·
DICR GRO	•	•	00	•	•	22	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•
DICR LEI	. 11	•	11	•	·	44	•	•	۵۵	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
DICR SCP		·	• •	•	•		•	•		11	•	•	•	•	•	11	مم	11	•	•	•	. 11	11	33	33
HYLO SPL	•	·	•	•	•	•	•	•	•	••	•	•	•	•	•	78	100	100	100	100	•	••	•••		
HYPN JUT	•	•	•	•	•	•	•	•	•	•	•	•	·	•	•	22	33	100	33	100	•	89	78	22	•
LOES BAD	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		00	•	00	•	•	00			•
PLEU SCH	•	. 11	33	•	•	•	•	•	•	67	•	•	•	•	•	100	100	100	100	100	۵۵	100	89	100	100
POHL SPH	•		55	•	•	22	•	•	•	11	11	۵۵	11	•	22	. 55		.55		.56	11	44	00	11	
POLY COM	•	·	•	•	•	~~	•	•	•		• •			•		•	•	•	•	55		-	·	• •	•
POLY STR	•	•	•	•	•	100	•	•	•	·	•	•	•	•	22	•	•	56	•	•	•	•	•	•	
RACO LAN	•	22	33	•	•	100	•	۰	22	100	56	78	. 11	•	11	56	22	00	۵۵	•	11	78	100	22	89
RHYT LOR	•	22	55	•	•	•	•	•	"	100	00	10	• •	•	• •	00	-	•		•	• •	10			
SDH AUST	•	•	•	•	•	56	•	•	•	•	•	67	80	44	. 11	•	•	•	•	•	•	•	·	•	•
SDH CADT	•	•	•	•	•	50	•	•	•	•	·	57	09		11	11	•	78	•	•	100	•	•	67	•
SDH COMP	•	•	•	•	50	11	100	•	•	•	•	•	•	56	•		•	,0	•	•	100	•	•	57	•
COMP CUMP	•	•	•	•	20	56	100	79	•	•	•	•	•	<u>_</u>	. 22	•	•	•	•	•	•	•	•	•	•
SPH FUSP	•	•	•	•	09	50	100	10	•	•	100	• • •	22		100	•	•	•	•	56	22	22	•	22	22
CDH T TMP	•	•	•	•		•	•	•	•	•	100	+	55	22	100	•			•	50			•		
SEN DINB		•			100	•	•	•	•	•	•	•	•	55		•	•	•	•	•	•	•	•	•	•
CDU MATT	100	•	gC	100	11	•		•	•	•	•	•	•	22	-+++	•	•	•		•	•	•	•		•
SPR MAJU		•	•	22	100	•	44	57	•	•	•	•	•	33	•	•	•	•	•	•	•	·	•		•
SPR MULL	56				100			100			•	•		วา		•	•	•	•	•	•	•	•	•	•
SPH PAPI	100	89	22	89	44	100	11	100	100	22	•	•	33	22	44	•		•		•		•	•	•	•
SPH PULC	- 33				11	•	•	•	•	•	•	•	•	44	•	•	•	•	•	•	•	•	•	•	•
	•••																								

Vedlegg	2	forts.
---------	---	--------

nina oppdragsmelding 423 -

Analyserute Sample plot	B 311	B 314	B 319	B 323	B 328	В 411	B 414	B 418	B 423	B 427	B 510	B 513	B 516	B 526	B 529	В 611	B 614	B 619	B 622	B 627	C 110	C 114	C 118	C 121	C 128
SPH RUBE	67	100	89	89	22	100	67	100	100	78	22	56	100	100	100							67	89	33	78
SPH SUBN	67	•		100					22																
SPH TENE	100	67	44	100	100	100	100	100	100	33	78	11	100	100	100								11		11
WARN FLU	100		44	33	33	•		•	•		•			11		•	•	•					•		
BARB KIN																			44						
BARB LYC	•	•	•	•	•	•	•	•	•	•	·	٠	•	•	•	วว	•	•	11	•	٠	•	•	•	•
CALY NEE	·	•	•	•	•	•	•	•	•	•	•	•	•	•	•	22	•	•	•	•	•	•	•	•	•
CALY SPH	33	22	•	•	•	11	•	·	11	•	11	·	22	11	•	•	•	11	•	56	79	•	11	79	วว
CEPH BIC	55	22	•	•	•	56	·	. 11	22	. 11		·	55		วว	•	·		•	50	70	•		70	22
CEPH CON	•	•	•	•	·	50	•		22		70	วว	22	•	11	•	·	•	•	•	•	•	•	•	22
CEPH/LUN	วว	วา	•	56		56		100	00		00	22 56	33		67	•	•	•	•	56		EC			EC
CEPI. DIV	55	. 22	•	50	33	50	100	100	09	44	09	50	09	100	07	•	·	•	•	11	100	50	33	09	50
CEPL SPT	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	·	•	•	11	•	•	·	•	•
CEPHLLAZ	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	·	•	•		22	•	·	. 11	•
CLASGYMN		. 11	. 11			56	100	100		•	•	•	•	100	56	•	•	•	•	·	33	•	•	11	•
KURZ PAU	100	56	79	22	100	100	100	22	100		100	67	100	67	20	•	·	•	•	•	•			22	70
LOPH EXC		50	10	44	•	100	•	22	100		100	07	100	07	09	•		•	•	•	•	44	44	33	10
LOPH VEN	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	56	•	•	•	•	•		•	•
MYLT ANO	•	11	. 22	56	•	80	•	. 11	80	44	100	56	80	. 11	56	•	50	•	•	56		วว	11		
MYLI TAY	•		55	50	•	09	•		22	23	100	50	03		11	•	•	•	-	50	100	11	56	09	22
ODON SPH	78		80	22	•	80	56	100	100	79	100	33		67	100	•	·	•	•	•	•		20	•	22
PTIL CIL	70	22	78	22	•	03	50	100	11	22	23	44	100	07	100	11	80	•	33	•	•	56	22	22	•
RICA LAT	•	22	10	. 11	•	78	•	•	22	22	11	22	11	•	56		00	•	55	22	•	50	•	22	22
	•	•	•		•	10	•	•	00	•	• •	00		•	00	•	•	•	•	£-£-	•	•	•	~~	~~
CETR ISL						67	22	33	78	56	89	67	78	11	11										
CLAD ARB		22	11			56			56	100	67	56			33	89	56		67		22	67	100	44	67
CLAD CAN																				33					
CLAD COC																									
CLAD COR																				22					
CLAD GRI										22		22				22	11						56		
CLAD MER									11						•		33			56					
CLAD POR		22	11							78	33	100	33			89	56	22	56	11	11	44	100		78
CLAD/RAN			67			11			22	67	78	22	33		33	11	22		44		11	22	44	56	33
CLAD SQU									67		11	22										11	11		
CLAD STE												44													
CLAD SUF					11			11		33	56		11		22								22		
CLAD SUL																				11					
CLAD UNC		11	44			56		33	33	100	33	56	33	11	67							33	89		67
COEL ACU										22	33	33	22		22				•	•					
HYPG PHY			•														33			22					
OCHR FRI								11	11																
PARM SUL																									
SPHA GLO																									

© Norsk institutt for naturforskning (NINA) 2010 http://www.nina.no Vennligst kontakt NINA, NO-7485 TRONDHEIM for reproduksjon av tabeller, figurer, illustrasjoner i denne rapporten.

60

_

Analyserute Sample plot	C 214	C 210	C	C 224	C 227	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	E	E	E	E	E
	214	213	~~ 1		~~~	110	110	120	125	120	210	214	219	221	220	511	519	521	325	320		110	119	120	127
ANDR POL	100	67	100	44	100	89	89	89		56	56	44	100	100	67	89	89	44	89	100		56	67	67	33
ARCT ALP												•••							00	100		00	07	07	00
ARCT UVA																									
BETU NAN						11	56	44	22	56		11	22		67	11		11		į		33		22	44
CALL VUL	100	89	100	89	89	100	100	100	44	100	100	100	100	78	89	89	89	89	100	100	89	100	67	67	100
EMPE NIG							78	67		22															
ERIC TET	67	78	78	67	100	67		22	11	89		67	100	100	78	89	89	89	89	100		11		11	
VACC MYR																									
VACC VIT																									
DROS ANG																									
DROS ROT	56	56		11	22	33	44			89	100	11	44	44		11	100	22		44					
MENY TRI					•							•		•											
NART OSS	33	100	100	100	100						78	33	78	100	100	78	100	89	100	100		78		100	
PING VUL	56	•	22	•	11					•					•				•		•		•		
RUBU CHM	22			•	22	•	•				•						67		. •	33		•		22	11
VA OX.MI	•	•	•	•	•	•	11	•	•	•	•	•	•	•	•	•	۰.	•	•	•	•	•	•	•	•
a 5707.07																									
C DIOICA	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
C LASIOC	•	•	•	•	•	•	•	•	•	•	•	•	·	•	•	•	•	•	•	•	•	•	•	•	•
C LIMOSA		•	•	•	•		•	•	•	•		•			•	•	•	•	٠	•	•	•	•	•	•
C PAUCIF	11	•	•	•	•	11	•	•	•	•	100	•	11	56					•		•	•	•	•	•
C RUSIRA	•		•	•		•	•	•	•	•		•	•	•	11	33	44	400	•	100	•	•		•	•
ER AN AN		22 70		70	00		100				100			100	100		100	100	70	001			100		100
DUDA AUG	100	78	09	10	69	100	100	100	100	100	100	100	100	100	100	09	11	44	/0	09	09	100	100	100	100
TRIC CES		67	80	100			•	•	•	56	80	67	80	78	78	78	100	100		80	•	. 11	•	100	•
	100	07	03	100	100	100	•	•	•	50	03	. 07	03	70	10	70	100	100	100	05	•		•	100	•
ANAS MIN																								11	
AULA PAL																									
DICR BER																									
DICR GRO																									
DICR LEI	11				11																•				
DICR SCP																				٠					
HYLO SPL																									
HYPN JUT																							•		
LOES BAD																11	22	78		67	٠.				
PLEU SCH						56	11	67											•						
POHL SPH																	•								
POLY COM								•	•	•	•	•		•		•	•	•				•		•	•
POLY STR	22							•	•	•	•			•	•	•	•	•		•		•		•	•
RACO LAN	44	33	100	22	33	78	44	78	100	33	11	100	89	78	100	100	33	•	100	89	100	100	89	100	100
RHYT LOR	•	•	•		•	•	•	•	•			•			•	•			•		•	•	•	•	•
SPH AUST	•	•	•	•	•	33	78	33	•	78	78	•	•	56	•	•	100	22	•	22	•	•	•	•	•
SPH CAPI	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
SPH COMP	•	•	•		•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
SPH CUSP	•	11	-	22	•	•		•	•			•	•	•	•		•	•	•	•	•	•	•	•	
SPH FUSC	•	•	-	•	•	•	78	•	•	100	89	•	•	•	•	•	•	•	•	•	•	•	•	•	
SPH LINB	•		•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	
SPH MAGM	•	67	•	•	•	•	•	•	•	•	•	•	44	•	•	•	•	•	•	•		•	•	•	•
SPH MAJU	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•			•	•	•		•	•	•	•
SPH MOLL			•				•	•	•	•		•				วา			•		•	•	•	•	•
SPH PAPI	67	67	•	20	22	33	•	•	•	•	33	•	22	22	. 1.1	33	33	44	•	44	•	•	•	•	•
SPR PULC	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

© Norsk institutt for naturforskning (NINA) 2010 http://www.nina.no Vennligst kontakt NINA, NO-7485 TRONDHEIM for reproduksjon av tabeller, figurer, illustrasjoner i denne rapporten.

Γ

nina oppdragsmelding 423 -

SPH RUBE 89 67 78 78 100 22 100 100 33 89 78 33 56 33	E E 20 127
SPH TENE 44 44 22 78 89 89 44 100 78 67 56 22 100 100 78 44 BARE KUN	
SPH TENE 44 44 22 78 89 89 44 100 78 67 56 22 100 00 78 44 BARE KUN	
MARN FLU	44 .
BARB KUN BARB LYC	· ·
BARB LYC	
CALY NEE 44 33 22 67 33 22 11 33 78 44 CEPH BIC 22 33 67 22 11 33 78 44 CEPH CON 22 33 67 22 11 33 78 44 CEPH CON 22 33 67 100 11 89 89 33 22 100 100 56 33 CEPL JUN 89 67 100 18 89 33 22 100 100 56 33 CEPL JVI 89 67 100 10 89 11 <td></td>	
CALY SPH	
CEPH BIC	
CEPH CON	11 .
CEPH/LUN 89 44 .67 100 78 56 89 .67 100 11 89 89 33 22 100 100 .56 .33 CEPL DIV	
CEPL SPI 11 78 44 67 11 41 11 11 CLAAGYMN 11 78 44 67 11 41 100 33 67 33 LOPH EXC 11 22 56 78 44 56 78 11 11 22 22 11 . MYLI ANO 22 56 78 44 56 78 11 78 44 11 .<	33 .
CEPHLLAZ 11 78 44 67 11 44 100 33 78 100 33 100 89 11 44 100 33 67 33 LOPH EXC 11 22 56 78 44 11 11 22 22 11 11 11 22 11	• •
CLALGYMN 11 78 44 . <td< td=""><td></td></td<>	
KURZ PAU 89 67 100 89 100 33 78 100 33 100 89 11 44 100 133 67 . 33 LOPH EXC	
LOPH EXC .<	56 .
LOPH VEN 11 .	
MYLI ANO .<	
MYLI TAY . .44 . .11 .33 .11 67 11 78 11 11 22 67 89 56 44 . .11 ODON SPH 100 56 67 56 100 78 .67 .78 100 22 67 89 33 44 100 78 89 22 .67 33 33 .22 .22 .	11 .
ODON SPH 100 56 67 56 100 78 67 78 100 22 67 89 33 44 100 100 78 89 .	
PTIL CIL 11 . 22 . 78 . <td< td=""><td></td></td<>	
RICA LAT 33 44 22 11 33 33 11 56 44 11 11 11 14 CETR ISL . <	
CETR ISL	22 .
CLAD ARB 100 56 56 22 89 67 56 78 100 89 78 100 100 78 67 100 89 89 100 78 CLAD CAN	78
CLAD CAN	89 100
CLAD COC	
CLAD COR	22
CLAD GRI	
CLAD MER	67 67
CLAD FOR 44 78 44 22 67 67 89 89 89 .100 89 56 100 100 .11 .89 100 100 CLAD/RAN 11 .11 .22 .78 .78 .78 11 67 78 56 .22 100 56 78 78 67 CLAD/RAN 11 .11 .22 .78 .78 .78 11 67 78 56 .22 100 56 78 78 67 CLAD SQU 78 .78 .78 .22 .22 .22 11 .22 .22 .11 .22 . .22 .11 .22 . .	
CLAD/RAN 11 11 22 . 78 . 78 56 . 22 100 56 78 67 CLAD SQU . <t< td=""><td>78 100</td></t<>	78 100
CLAD SQU	33 89
CLAD STE	. 11
CLAD SUF .<	
CLAD SUL	
CLAD UNC 56 44 89 . 33 56 33 56 44 33 11 89 100 89 100 78 44 33 100 67 100 89 89 1	00 100
COEL ACU	00 22
HYPG PHY	
OCHR FRI	
PARM SUL	
SPHA GLO	

Vedlegg 3

٦

Analyserute	A	A 116	A	A	A	A 211	A 214	A	A	A	A 210	A 316	A 320	A 224	A 227	A	A	A 410	A	A مدر	A	A	A	A	A
		110	122	125	129	211	214	219		229	310	310	320	524	521	410	413	410	420	420	515	517	521	524	527
ANDR POL		1	1	1	1			1	1	1			1	1	1	1	1	1	1	1	1	1	1	1	1
ARCT ALP	•			•	'	•	•		•	•	•	•	1					•			•	•		•	
ARCT UVA	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
BETU NAN	2	12	•	30	•	2	•	2	•	10	.3	•	4	2	•	•	•	. 1	•	•	•	•	•	·	•
CALL VUL	2		20	7	10	3	5	7	10	.0	2	2	15	4	2	2	10	5	30	1	2	4	15	5	2
EMPE NIG	5	1	1	1	2	15	1	2	1	2	7	2	2	3	1	1		Ŭ	00	1	-	1		Ũ	-
ERIC TET	Ŭ	•	1	·	_			-		_		_	_	Ĩ				2	1	1	1	•			1
VACC MYR		÷																_			İ			÷	
VACC VIT																									
																							4	4	
DROS ANG	•	•	•	•	•	•	·	•	•		•	·	•	•	•		·						1	1	1
DROS ROT	•	•	•	•	•	•	•	•	•	1	•	•	•	•	•	1	1	1	1	1	1	1	2	1	1
MENY TRI	•	•	·	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•			•	;		
NART USS	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1	1	•	1	1	1
PING VUL	·	•	·	•	•	•	•	•	•	•	•		•	•		•	•	•	•	•	•	•	1	•	
KUBU CHM	•	•	•	•	•	•	•		•	٠	•	1	•	•	1	•	•	•		•		·	1	•	1
VA UX.MI	•	•	•	•	•	•	·	1	•	•	•	•	•	•	•	•	•	•	1	•	1	•	1	•	•
C DIOICA																		•							
C LASIOC									•	• •							•								
C LIMOSA																									
C PAUCIF								1	1	1						1	1	1	1	1			1		
C ROSTRA																									
ER AN.AN					•		•					•										•			
ERIO VAG	7	30	8	2	5	2	8	4	10	10	2	1	20	15	5	6	7	5	20	2	5	2	2	3	30
PHRA AUS		•																					•		•
TRIC CES	•		•	•	•	•	•	1	1	•	•	•	•	•	•	1	1	5	1	2	20	12	5	5	3
ANAS MIN																									
AULA PAL																									
DICR BER	÷																								
DICR GRO																									
DICR LEI										•															
DICR SCP															1										
HYLO SPL														1	1										
HYPN JUT	1	1	1	1		1																			
LOES BAD																							•		
PLEU SCH	1	1	1	1	1	1		1	1	1	1	1	1	1	1	1	1		1				•		
POHL SPH										1						۰.	1								
POLY COM												1													
POLY STR																			1	1					1
RACO LAN	80	90	55	1	70	80	90	60	25	80	90	95	70	90	90	85	40	60	10						
RHYT LOR																									
SPH AUST							•									1	12		40	1	50	1	30	1	1
SPH CAPI	1																								
SPH COMP																									
SPH CUSP																					•				
SPH FUSC	•																					•	•		
SPH LINB																									
SPH MAGE																		10		5	1	5	2	2	1

© Norsk institutt for naturforskning (NINA) 2010 http://www.nina.no Vennligst kontakt NINA, NO-7485 TRONDHEIM for reproduksjon av tabeller, figurer, illustrasjoner i denne rapporten.

ſ

Analyserute Sample plot	A 111	A 116	A 122	A 125	A 129	A 211	A 214	A 219	A 224	A 229	A 310	A 316	A 320	A 324	A 327	A 410	A 413	A 418	A 420	A 428	A 513	A 517	A 521	A 524	A 527
SPH MOLL				•																					
SPH PAPI	·	•	•	•	•		•		•	1	•	•	•		•	•	1	2	1	1	3	50	40	60	75
SPH PULC				•							•		•											•	
SPH RUBE	•	•	•	•	•		•	25	3	10	•		•	•		1	15	1	2	2	1	4	10	2	1
SPH SUBN	•	•	•	۰	•	•	•	•	•	•	•	•		•	•	•	•	•	•	1	•	•	•	•	1
SPH TENE	•	•	•	·	•				35	•	•	•	•		•	•	1	5	1	90	10	8	8	30	4
WARN FLU	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
BARB KUN					•																				
BARB LYC							•																		
CALY NEE																									
CALY SPH		•							1	1	•						1		1	1	1	1		1	1
CEPH BIC				•							•					•	1				1				1
CEPH CON	•			•											•				1						
CEPH/LUN				•					1	1						1	1	1	1	1	1	1	1	1	1
CEPL DIV											۰.														
CEPL SPI					•				•	1	•							•							
CEPHLLAZ				•					•		•						•	•							
CLA&GYMN				•					1	•					•		•	•		1	1	1	1	1	1
KURZ PAU				•	•			1	1	1	•			۰.			1	1	1	1	1	2	1	1	2
LOPH EXC				•	•			•	•	•	•										•				
LOPH VEN	1					. •			•		•														
MYLI ANO				•				1	1	•						•	1	1	1	1	1	1	1	1	
MYLI TAY		•					•			•	•		•		•	•		•		•			•	•	
ODON SPH	1						•		1	•	•				•	1	1	2	1	1	1	1	2	1	1
PTIL CIL		•				1	•			•	1		1		•	1	2	•	1	•	•	•	•	•	1
RICA LAT	·	•	•	•	•		•	•		•		•	•	•	•	•	1	1	•	1	1	1	1	1	1
CETR ISL									7	1					•		1	1	1	1	1		1	1	1
CLAD ARB	1	1	10	15	20	8	2	10	8	1	2	.1	1	1	1	1	3	1	3	1	1				1
CLAD CAN																									
CLAD COC																									
CLAD COR										•	1											٠.			
CLAD GRI						1	1			1	1	1		1	1	1		1							
CLAD MER						•																			
CLAD POR	2	1	7	15	2	8	2	1	1	1	1	1	1	1	2	2	1	1	1		1				1
CLAD/RAN	1		5	1	2	1	1	1	1			1		1	1	2	1	1	1		1			•	
CLAD SQU	۰.									•		1			•				1						
CLAD STE									•	-								1	•	•					
CLAD SUF										•					•			1	1					1	
CLAD SUL												1				•									•
CLAD UNC	1		1	1		1	1	1	1	1	, •	1	•	1	1	1	1	1	1	1	1		1	1	1
COEL ACU									1			1							5						
HYPG PHY		1								•															
OCHR FRI	•									•											•				
		1																							
PARM SUL	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	

© Norsk institutt for naturforskning (NINA) 2010 http://www.nina.no Vennligst kontakt NINA, NO-7485 TRONDHEIM for reproduksjon av tabeller, figurer, illustrasjoner i denne rapporten.

-																									
Analyserute	A	A	A	A	A	A	Α	Α	A	A	A	A	A	A	A	В	В	В	В	В	В	В	В	В	В
Sample plot	611	616	619	624	628	713	716	720	723	727	810	813	816	824	829	112	116	120	126	129	211	214	217	221	228
ANDR POL	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	•	1	•	•	•	1	1	1	1
ARCT ALP	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	8	•		1	8	•	3	7
ARCT UVA	•	•	•	•	•	·	•	•	•	•		•					•	•	•	15			•		
BETU NAN											1		2	4	18	1					2	2		2	5
CALL VUL	10	15	15	15	1	10	25	15	12	8	4	15	15	8	15	15	2	5	1	10	5	25	25	12	15
EMPE NIG		1				1	;	2	1						2	10	15	5	2	8	10	2	2	12	5
ERIC IEI	1	1	1	1	1	•	1	•	•	1	2	1	2	5	1	•	•	·	•	•	•	•	•	٠	•
VACC MIR	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠		•	•	•	•			·		•
VACC VII	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	1	•	·	•	•	1	I	•	1	•
DROS ANG	1				1																				
DROS ROT	1	. 1	1	1		1	1	1	1	1	1	1	1	1	1			1				1		1	
MENY TRI		•				• •							1	1											
NART OSS	1		1	1	3		1			1	10	2		1									2		
PING VUL																									
RUBU CHM	1	1	1							1						1									
VA OX.MI										1			•												
C DIOICA																									
C DIOICA	•	•	•	•	•	•	•	•	•	·		1	1			•	•	•	·	•		·	•	•	•
C LASICC	٠	•	•	٠	•	•	•	•	•	•	2	2	2	1	2	•	•	•	•	•	٠	•	•	•	•
C LIMOSA	•	•	•		•			•			•	•	•	•	•	•	•		•	•	•	•	•	•	•
C PAUCIF	•	•	•	1		1	1	•	2	1	·		•			•	•	1	•	•	•	·	•	·	•
ED AN AN	•	•	•	1	1	·	1	•	1	•	•	1	1		3	•	•	•	•	•	•	·	•	·	•
ER AN.AN	E										•	1		•	•		ว								
DHDA AIIS	5	0	2	20	1	10	3	2	2	2	ว	ว	1	1		3	2	3	2	1	. 0	2	1	2	5
TRIC CES	. 5	•	•		10	. 5	. 2	1	. 2	. 5	<u>ح</u>	ა ი	1	1	1	•	•	·	•	•	•	•	•	•	•
INIC CLD	5	•	•	1	10	5	3	1	5	5	00	2	I	1	•	•	•	•	•	•	•	•	•	•	•
ANAS MIN																		1			••				
AULA PAL															1		• .								
DICR BER																						1			
DICR GRO																						1			
DICR LEI		1	1									1		1											
DICR SCP																		1				1			
HYLO SPL															1	2					1	1		8	
HYPN JUT		1										۰.										1		1	. 1
LOES BAD		•									1	1	1	1	•										
PLEU SCH		1				1	1	1	1				1		1	1	1	1		1	1	1	1	8	1
POHL SPH		1	1						1									1				1		•	
POLY COM																	•		•					•	
POLY STR		1	1										1		1				•			•			•
RACO LAN		40	55	50		10	1	35		1	1	1	30	1	5	85	60	70	95	55	75	1	70		30
RHYT LOR												•			1							•			•
SPH AUST	30	45	20		1	50	1	5	10		2	5	1		8	•	•		•	•		•	•	•	•
SPH CAPI												•	•			•	•	•	•	•	1	35	•	70	•
SPH COMP					•				•		•		•	•		•	•	•	•	•		•	•	•	
SPH CUSP		•						•	•	•	•	•	•	•	•		•	•	•	•		•	•	•	•
SPH FUSC								•	•	•	•	•	•	•		•	•	•	•	•		•	•	•	•
SPH LINB	-							•	•	•	•	•	•	•	•		•	•	•			•	•	•	•
SPH MAGE	1					1	5	•		1	•	•	•		•		•	•	•	•	•		•	•	•
SPH MAJU	•						•	•	•	•	•	•	•	•			•	•			•		•	•	•
SPH MOLL				•			•	•	•	•	•	•		•			•	•	•	•	•	•	•	•	•
SPH PAPI	10		1	12	30	2	20	•	30	30	1	1	•	1		•	•	•	•	•	•		•	•	•
SPH PULC	•			•								•	•			•	•	•	•	•	•	•		•	•

© Norsk institutt for naturforskning (NINA) 2010 http://www.nina.no Vennligst kontakt NINA, NO-7485 TRONDHEIM for reproduksjon av tabeller, figurer, illustrasjoner i denne rapporten.

nina oppdragsmelding 423 -

Vedlegg 3 forts.

Analyserute Sample plot	A 611	A 616	A 619	A 624	A 628	A 713	A 716	A 720	A 723	A 727	A 810	A 813	A 816	A 824	A 829	B 112	B 116	B 120	B 126	B 129	B 211	B 214	B 217	B 221	B 228
SPH RUBE	2	1	1	4	1	3	30	1	30	20	3	8	60	25	55			15					4		
SPH SUBN					1																				
SPH TENE	20		1		40	10	2	1	2	15	3														
WARN FLU		•			•	•				•		•	•	•	•	•	•	•		•			•		•
BARB KUN																									
BARB LYC																									
CALY NEE																						1			
CALY SPH	1	1	1		1		1		1									1				1	1		
CEPH BIC	1			1	1	1								1											
CEPH CON																									
CEPH/LUN	1	1	1		1	1			1	1	1	1	1	1	1			1				1	1	1	
CEPL DIV																									
CEPL SPI							1											1				1			
CEPHLLAZ																									
CLA&GYMN	1				2		1		1	1				1											
KURZ PAU	1	1	1		1	1	1	1	1	1	1	2	1	1				1				1	1		
LOPH EXC																									
LOPH VEN				1																	•				
MYLI ANO	1	1	1			1	1	1	1									1				2		1	
MYLI TAY																		1				2	1		
ODON SPH	1		1	1	1	1	1	1	1	2	1	4	1	2	1								1		
PTIL CIL	1	1					1	1	1	1	1	1			1							1			
RICA LAT .	1	1	1	1	•	1	•	•	1	1	1	•	•	1	•	•	•	•	•	•			•	•	
CETR ISL							1										1	1	1	1		-			
CLAD ARB	1	1	5	4		1	3	15	3	. 1	1	1	1	5	1	10	20	3	5	30	15	12	20		30
CLAD CAN	~																								
CLAD COC																									
CLAD COR																									
CLAD GRI		1						1					1				1	1	1	1		1	1		1
CLAD MER		•													•							1			
CLAD POR		5	1	4		1	10	15	1		1		3	1	2	1	5	1	2	1	5	1	2		20
CLAD/RAN		1		1		1		1	1	1			່ 1		1	1	1		1	2		1	1	1	5
CLAD SQU																									
CLAD STE													•		1										
CLAD SUF	1		1			1	1	1		1	1								1				1		
CLAD SUL																									
CLAD UNC	1	1	1	4		1	1	1	2	1	1	1	1			1	1	1	1	1		1	1		1
COEL ACU																			1	1		1			
HYPG PHY																					1				
OCHR FRI		•	•																						
	-	-																							
PARM SUL																					1				

© Norsk institutt for naturforskning (NINA) 2010 http://www.nina.no Vennligst kontakt NINA, NO-7485 TRONDHEIM for reproduksjon av tabeller, figurer, illustrasjoner i denne rapporten.

Analyserute	в	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	С	С	С	С	с
Sample plot	311	314	319	323	328	411	414	418	423	427	510	513	516	526	529	611	614	619	622	627	110	114	118	121	128
ANDR POL	1	1	1	1		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		1	1		1
ARCT ALP																									
ARCT UVA																									
BETU NAN			2						1		1	1	2		1	3	8	12	1	2		5	1		1
CALL VUL		2	15	4		10		1	6	15	10	15	10	1	8	10	1	12	20	6	12	25	15	30	25
EMPE NIG	•	-		•	•	1	•	•	1	1		1	1	•	Ŭ	5	10	15	- 3	Ř	12	5		20	4
ERIC TET	1	2	2	ר	1	•	•	•	•	2	2	•	•	1	•	Ŭ		10	U	0	12	Ŭ		20	-1
VACC MYR		2	2	5	•	·	•	•	•	2	2	•	•	•	•		1	ว	•	1	•	•		•	•
VACC VIT	•	•	•	•	•	•	•	•	•	•	•	•	•	·	·	'		2	·		•	•	•	·	•
	•	•	•	·	•	•	•	•	•	•	·	•	•	•	•	•	·	·	٠	•	•	•	•	·	•
DROS ANG	1			1	1			1					1	1	1										
DROS ROT	1	<u> </u>	1	1		1		1	1	1	2	1	1	1	1					2	1	1		1	1
MENY TRI																									
NART OSS	3	2	1	2	1				1		1			1	1										
PING VUL																							1		1
RUBU CHM						1		1	1	1		1	1		1				1	1	5	1		2	1
VA OX.MI		1					•	•				1	1							1				-	
C DIOICA													÷												
C LASIOC																									
C LIMOSA			-		1		1	1						1					-			-	-		
C PAUCIF	•	•	•	1	•	•	•	•	•	•	1	1	•	•	1	·	•	•	•	•	•	·	1	•	1
C ROSTRA	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
ER AN AN	•	•	•	•	•	•	•	•	•	•	•	•	•	·	•	•	•	•	•	•	•	•	•	•	•
ERIO VAG	. 2	20	1	. 2	1	. 2	1	2	. 5	2	5	5			. 5	. 5	10	. 2	10	1	8	50	10	10	25
PHRA AUS	2	20	•	~	•	2	•	2	5	2	5	5	-	•	5	5	10	2	10	-	0	50	10	10	20
TRIC CES	5	25	8	8	1	4	1	2	5	1	1	•	10	2	2	•	•	•			•	•	1	•	1
ANAS MIN															•					•		•			
AULA PAL																			1						
DICR BER			1			1																			
DICR GRO	•	•		-	-	1	•												•				•		
DICR LEI		•	1	•	•	1	•	•	1	•	•	•	•	·	•	•	·	·	•	·	•	•	•	•	·
DICR SCP	•	•	•	•	•	•	•	•	'	1	•	•	•	·	•	1	1	1	•	•	•	1		1	1
HYLO SPL	•	·	·	•	•	·	•	•	•	•	•	•	•	•	•	10	25	50	25	20	•	'	1	'	
HYPN JUT	•	·	·	•	•	•	•	•	•	•	•	•	•	•	•	10	20	50	20	20	•	1		1	•
LOFS BAD	•	•	•	•	•	•	•	·	·	·	·	•	·	·	·	'	'	·	1	·	•	1	•		•
DLEII SCH	•			•	•	•	•	·	·		·	•	·	•	•	10	10	40	20	20		1		ว	
PDEU SCH	•	1	1	•	•		•	•	•	1				•		10	10	40	20	20	1	1	1	2	
PORL SPR	•	•	•	•	•	1	·	·	·	I	1	I	1	·	1	•	•	•	•	1	1	1	•	1	•
	•	•	•	•	•		•	•	•	·	•	•	•	·		•	•		•	•	•	•	•	•	•
POLY SIR	•	÷	÷	•	•	1	•	•						•	1		40			•					
RACO LAN	•	1	1	•	•	•	•	•	1	50	8	10	1	•	1	25	10	•	2	•	1	1	20	1	20
RHYT LOR	•	•	•	•	•		•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•
SPH AUST	•	•	•	•	•	25	•	•	•	•	•	40	40	6	1	÷	•		•	•		•	•		•
SPH CAPI	•	•	•	•	•	•	•	•	•	•	•	•	•	·	•	1	•	2	•	•	95		•	50	•
SPH COMP			•		10	1	45	•	•	•	•	•	•	3	•	•	•	•	•		•	•	•	•	
SPH CUSP					2	2	45	2			•	•	•	2	1	•	•	•	•	•	•		•	•	•
SPH FUSC					•						40	15	1	•	40		•			35	1	9	•	5	5
SPH LINB					25						•	•		1				•						•	
SPH MAGE	60		18	85	1						•	•	•		20								•		
SPH MAJU				1	15		1							2											
SPH MOLL	2				15			15																	

67

© Norsk institutt for naturforskning (NINA) 2010 http://www.nina.no Vennligst kontakt NINA, NO-7485 TRONDHEIM for reproduksjon av tabeller, figurer, illustrasjoner i denne rapporten.

		314	319	323	328	411	414	418	423	427	510	513	516	526	529	611	614	619	622	627	110	114	118	121	128
SPH PULC	1				1									1											
SPH RUBE	1	2	20	4	1	2	1	1	1	9	1	1	10	1	10							35	15	7	15
SPH SUBN	5			4					1																•
SPH TENE	25	2	1	2	30	60	10	70	20	1	8	1	20	80	10		•						1		1
WARN FLU	1	•	1	1	1	·		·		•	•	•		1							•	•	•	•	•
BARB KUN																			1						
BARB LYC																1									
CALY NEE																									
CALY SPH	1	1				1			1		1		1	1				1		1	1		1	1	1
CEPH BIC						1		1	1	1					1										1
CEPH CON											1	1	1		1										
CEPH/LUN	1	1		1	1	1	1	1	1	1	1	1	1	1	1					1	1	1	1	1	1
CEPL DIV							ĺ.													1					
CEPL SPI		•																		1					
CEPHLLAZ																					1			1	
CLA&GYMN	1	1	1	1	2	1	1	1	1					2	1										
KURZ PAU	1	1	1	1		1		1	1	1	1	1	2	1	1		•					1	1	1	1
LOPH EXC																	1								
LOPH VEN										1							2						1		
MYLI ANO		1	1	1		1		1	1	1	1	1	1	1	1					2	1	1	1	1	1
MYLI TAY									1	1					1							1	1		1
ODON SPH	1	5	2	1		1	1	1	1	1	1	1	1	1	1								1		
PTIL CIL		1	2						1	1	1	1				1	1		1			1		1	
RICA LAT	•	•	•	1	•	1		•	1	·	1	1	1		1	•	•	•	•	1	•		•	1	1
CETR ISL						1	1	1	1	1	1	1	2	1	1										
CLAD ARB	·	1	1	•	•	1	•	•	2	10	2	5	-	•	1	15	2	•	10	•	. 1	5	20	1	10
CLAD CAN	•	•	•	•	•	•	•	•	-		-	Ŭ					-	•							
CLAD COC	•	•	•	•							·														
CLAD COR	•	•	•	•	•	•	•				÷									1					
CLAD GRI	•	•	•	•		•	•	•		1		1				1	1						1		
CLAD MER	•	•	•	•	•	•	•	•	1	·	•		•				1			4				÷	÷
CLAD POR	•	1	1	•	•	•	•	•	•	2	1	20	2	•		10	3	1	3	1	1	1	20		4
CLAD/RAN	·	•	1	•	·	1	•		1	1	2	1	1		1	1	5		4		1	2		1	1
CLAD SOU	·	•	•	•	•	•	•	•	2	•	1	1		•		•						1	1		
CLAD STE	·	•	•	•	•	•	•	•	-	•	•	1	•	•	•				·						
CLAD SUF	·	•	•	•	1	•	•	1	•	1	1				1								1		
CLAD SUL	•	•	•	•	•	•	•	•		•										1					
CLAD UNC	•	1	1	•	•	1	•	1	1	2	1	1	1	1	1	•	•	•	•		•	1	15		1
COEL ACU	•	•		•	•	•	•	•	•	1	2	1	1	•	2	•		•	•		•				
HYPG PHY	•	•	•	•	•	•	•	•	•	•	-	•	•	•	-	•	2		•	1					
OCHR FRI	•	•	•	•	•	•	•	1	1	•			•	•	•	•	-								
PARM SUL	•	•	•	•	•	•	•		•	•			•	•	•	•						•			
SPHA GLO	•	•	•	•	•	•	•	•	•		÷	:	•												

© Norsk institutt for naturforskning (NINA) 2010 http://www.nina.no Vennligst kontakt NINA, NO-7485 TRONDHEIM for reproduksjon av tabeller, figurer, illustrasjoner i denne rapporten.

-

.

68

Anchecrut						~				<u> </u>			<u> </u>					<u> </u>	~	<u> </u>					
Sample plot	214	210	221	224	227	110	U 118	120	U 123	126	210	D 214	210	D 221	226	U 211	210	221	225	228	112	116	110	120	127
	214	213	221	224	~~~			120	120	120	210	214	213	221			515	521	525	520				120	
ANDR POL	1	1	1	1	1	1	1	1		1	1	1	1	1	1	1	1	1	1	1		1	1	1	1
ARCT ALP	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
ARCT UVA	•	•	•	•	•	·	•	•	•	•	•	•	•	•	•	•	•	•	•	·	·	•	•	•	·
BETH NAN	•	•	•	•	•			. 2	. 2	1	•			•	5	1	•	1	•	•	•	1	•		. 2
CALL VIII.	15	15	15	10	. 15	20	25	12	2	5	. 5	5	4	. 5	4	2		2	10	6	50	، م	o	2	5
EMPE NIG	15	15	15	10	15	20	25	2	2	1	5			5	-	5	-	2	10	0	50	0	0	2	5
ERIC TET	2	10	2	1	4	1	•	1	1	1	•	1	3	2	3	3	2	3	5	2	•	1	•	1	
VACC MYR	-		-	•		•	•	•	•	•	•	•	Ŭ	-	Ŭ	Ũ	-	Ŭ	Ŭ	-	•	•	•	•	•
VACC VIT	•	•	•	•	•	•	•	•	•	·	•	•	•	•	•	•	•	•	•	•	·	•	•	•	·
	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
DROS ANG																									
DROS ROT	1	- 1		1	1	1	1			2	1	1	1	1		1	1	1		1					
MENY TRI																									
NART OSS	2	10	10	10	5						1	1	1	3	4	2	1	1	5	5		1		5	
PING VUL	1		1		1																				
RUBU CHM	1				1												1			1				1	1
VA OX.MI							1																		
C DIOICA		•	•	•					•											•		•			•
C LASIOC	•	•	•	•			•	•	•	•	•		•		•		•	•	•	•		•	•	•	•
C LIMOSA				•		•	•								•									•	•
C PAUCIF	1	•			•	1					1		1	1			•			•		-			
C ROSTRA															1	1	1	1		1			•		
ER AN.AN	•	1			1						1				1		1	1		1			1		
ERIO VAG	5	1	1	1	1	5	3	8	8	4	8	4	5	5	3	2	1	1	2	1	2	8	10	4	5
PHRA AUS																									
TRIC CES	5	_ 1	4	8	5	1	•	•	•	1	2	1	2	2	1	5	10	10	4	5	•	1	•	1	•
ANAS MIN																								1	
AULA PAL	•	•	•	•	•	•	•	•	•	•	•	•	·	•	•	•	•	•	•	•	•	•	•	•	•
DICE BEE	•	·	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
DICR GRO	•	•	•	•	•	•	•	·	·	·	·	·	•	·	·	·	•	•	•	•	•	·	•	•	·
DICR GRO		·	•	•		·	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	,	•	•	•
DICK DEI	1	·	·	. •	I	•	·	·	·	·	·	•	•	•	·	•	•	•	•	•	•	•	•	•	•
DICK SCP	•	•	•	•	•	•	·	•	·	•	•	•	•	•	•	•	•	•	·	•	•	·	•	•	·
HILO SPL	•	·	·	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
HYPN JUT	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•				•		•	•	•	•	•
LOES BAD	. •	•	•	•	•	÷	;		·	•	•	•	•	•	•	1	1	1	•	1	•	•	•	•	•
PLEU SCH	•	•	·	•	•	1	1	1	·	•	·	•	•	•	•	•	•	•	•	•	•	•	•	•	•
PORL SPH	•	•	•	·	•	·	•	•	•	·	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
POLY COM	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
POLY STR	1	·		:			<u>.</u>											•							
RACO LAN	20	1	40	1	1	2	7	35	85	5	1	60	10	40	50	60	1	•	40	40	90	90	70	80	90
RHYT LOR	•	•	•	•	•	·			•			•	•		•	•			•	:	•	•	•	•	•
SPH AUST	•	•	•	•	•	1	30	2	•	15	25	•	•	35	•	•	60	2	•	1	•	•	•	•	•
SPH CAPI	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
SPH COMP	•		•	•	•	•	•		•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•
SPH CUSP		1		1	•					•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
SPH FUSC				•			15			60	30				•	•	•	•		•	•	•	•	•	•
SPH LINB										•											•		•		•
SPH MAGE		15											1						•				•		
SPH MAJU																									
SPH MOLL																									
SPH PAPI	10	10		2	1	1					8		1	1	2	7	1	3		30					
			-																						

© Norsk institutt for naturforskning (NINA) 2010 http://www.nina.no Vennligst kontakt NINA, NO-7485 TRONDHEIM for reproduksjon av tabeller, figurer, illustrasjoner i denne rapporten.

nina oppdragsmelding 423 -

Analyserute	С	C	С	С	С	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	E	Е	Е	Е	Е
Sample plot	214	219	221	224	227	110	118	120	123	126	210	214	219	221	226	311	319	321	325	328	112	116	119	120	127
SPH PULC																									
SPH RUBE	25	1		10	20	80	15	40	1	10	15	15	5	1		3	1	1							
SPH SUBN																									
SPH TENE	1	2	1	40	40	1				1	5		10	1	15	1	10	90		20			10	10	
WARN FLU				•	•			•	•	•		•	•		•	•	•	•					•		
BARB KUN					•																				
BARB LYC																									
CALY NEE																									
CALY SPH						1	1	1		1	1			1											
CEPH BIC											1		1	1			1	1		1				1	
CEPH CON						1	1																		
CEPH/LUN	1	1		1	1	1	1	1		1	1	1	1	1	1	1	1	2		1			1	1	
CEPL DIV																									
CEPL SPI																				1		1			
CEPHLLAZ																									
CLA&GYMN		1		1	1						1							1							
KURZ PAU	1	1	10	1	1	1		1		1	1	1	1	1	1	1	2	1	1	1			1	2	
LOPH EXC							۰.																		
LOPH VEN	1																								
MYLI ANO				1	1	1	1	1		1	1		1	1						1		1		1	
MYLI TAY			1			1		1		1	1	1	2	1	1	1	1	2	1	1			1		
ODON SPH	1	1	1	1	1	1		1		1	1	1	1	2	1	1	2	2	1	1					
PTIL CIL	1		1		2						1			1	1	1		1	1	1					
RICA LAT	1	1	•	1	•	1	•	•	•	1	1	1	1	1		•	1	•	•	•		•	•	1	•
CETR ISL															1	1	1	1		1		1	1	1	
CLAD ARB	2	1	1	1	5	2	7	1	4	1	1	10	10	5	20	10	1	1	5	1	1	3	5	2	15
CLAD CAN																									
CLAD COC																								1	
CLAD COR																					. •				
CLAD GRI										1		1			1						3	1	1	1	2
CLAD MER																						1			
CLAD POR	2	40	1	3	10	1	7	2	4	2		5	5	5	25	1			1		2	3	2	2	2
CLAD/RAN	1		1		8			•	1			1	1	1	1	1		1	2	1	1	2	1	1	1
CLAD SQU															1					1	1	1			1
CLAD STE														•											
CLAD SUF											1	1	1	1	1			1	1	1					
CLAD SUL																									
CLAD UNC	1	1	1		1	1	1	1	1	1	1	4	2	1	1	1	1	1	2	1	2	1	2	1	2
COEL ACU													4		1					2			1	2	1
НҮРС РНҮ																									
OCHR FRI																									
PARM SUL																									
CDHA CLO																									

Vedlegg 4

Oversikt over miljøvariabler med forkortelser og enheter for torv-, vann- og plantevevsprøver.-Survey of environmental variables with abbreviations and units for peat- and water samples and plant material.

Torvprøver og høgde over grunnvannsnivå - Soil samples and depth to water table

		Miljøvariabel	Environmental variable	Enhet / Unit
GrVann nH	Wat Tab	høgde over grunnvannsnivå	depth to water table	ст
N		totalt nitrogen	total N	mmol/ka
Н		utbyttbart H	exchangeable H	mmol/kg
AI		utbyttbart Al	exchangeable Al	mmol/kg
Ba		utbyttbart Ba	exchangeable Ba	µ mol/kg
С		ekstraherbart C	extractable C	mmol/kg
Ca		utbyttbart Ca	exchangeable Ca	mmol/kg
Fe		utbyttbart Fe	exchangeable Fe	mmol/kg
К		utbyttbart K	exchangeable K	mmol/kg
Mg		utbyttbart Mg	exchangeable Mg	mmol/kg
Mn		utbyttbart Mn	exchangeable Mn	mmol/kg
Na		utbyttbart Na	exchangeable Na	mmol/kg
Р		ekstraherbart P	extractable P	mmol/kg
Si		utbyttbart Si	exchangeable Si	μ mol/kg
Sr		utbyttbart Sr	exchangeable Sr	μ mol/kg
Zn		utbyttbart Zn	exchangeable Zn	μ mol/kg
Кар	CEC	utbyttingskapasitet	cation exchange capacity	mmol(+)/kg
Basem	BS	basemetning	base saturation	%

Vannprøver - Water samples

		Miljøvariabel	Environmental variable	Enhet / Unit
Ledn	Cond	ledningsevne	conductivity	ս Տ/cm
pН		рН	рН	mg/l
Ň		totalt nitrogen	total N	mg/l
Al		totalt Al	total Al	mg/l
Ba		totalt Ba	total Ba	mg/l
С		totalt C	total C	mg/l
Cu		totalt Cu	total	mg/l
Fe		totalt Fe	total Fe	mg/l
К		totalt K	total K	mg/l
Ma		totalt Mg	total Mg	mg/l
Na		totalt Na	total Na	mg/l
S		totalt S	total S	mg/l
Si		totalt Si	total Si	mg/l
Vedlegg 4 forts.

<u></u>	Miljøvariabel	Environmental variable	Enhet / Unit
AI	totalt Al	total Al	mmol/kg
Ва	totalt Ba	total Ba	μ mol/kg
Са	totalt Ca	total Ca	mmol/kg
Cu	totalt Cu	total Cu	μ mol/kg
Fe	totalt Fe	total Fe	mmol/kg
К	totalt K	total K	mmol/kg
Mg	totalt Mg	total Mg	mmol/kg
Mn	totalt Mn	total Mn	mmol/kg
N	totalt N	total N	mmol/kg
Na	totalt Na	total Na	mmol/kg
Р	totalt P	total P	mmol/kg
Pb	totalt Pb	total Pb	μ mol/kg
S	totalt S	total S	mmol/kg
Sr	totalt Sr	total Sr	μ mol/kg
Zn	totalt Zn	total Si	μ mol/kg

Kjemiske variabler i torvprøver, og høgde over grunnvann fra 96 analyseruter. Enheter vist i vedlegg 4. - Chemical variables in peat, and depth to water table from 96 sample plots. Units shown in appendix 4.

c N	GrVann /at Tab	рН	N	н	AI	Ва	С	Ca	Fe	к	Mg	Mn	Na	Ρ	S	Si	Sr	Zn	Kap CEC	Basem BS
A111	50	4.15	941	92.5	1.74	32	234	37.60	0.30	10.75	63.82	0.49	18.90	2.33	2.22	54	334	86	326.0	71.3
A116	52	4.02	935	124.5	1.33	51	246	64.43	0.41	8.76	83.40	0.31	19.25	3.18	2.38	49	468	598	448.8	72.1
A122	65	4.15	1174	79.7	2.83	23	172	36.85	0.35	6.63	62.14	0.07	16.84	1.57	2.34	87	358	92	301.3	73.5
A125	58	3.99	1094	77.2	1.86	20	193	36.63	0.37	6.28	63.26	0.12	17.89	2.28	2.26	55	351	65	301.4	74.3
A129	55	4.17	719	133.1	2.01	36	222	44.00	0.31	9.27	72.04	0.53	20.46	2.48	2.89	69	346	137	396.0	66.1
A219	16	4.08	989	98.9	1.42	27	275	47.19	0.37	9.96	72.09	0.09	20.13	2.17	4.04	76	455	222	367.7	73.1
A224	13	4.27	1182	81.1	2.93	11	120	33.50	0.69	2.86	50.59	0.02	14.35	0.77	1.78	116	317	39	266.6	69.5
A229	30	4.19	1037	105.3	1.70	28	222	47.54	0.45	10.31	72.43	0.14	21.74	2.34	3.81	65	426	229	377.6	72.0
A310	55	4.12	867	91.6	1.34	25	218	40.25	0.42	14.64	68.06	0.38	18.58	2.23	2.57	47	370	200	342.2	73.0
A316	100	4.01	821	84.6	5.43	69	294	45.91	0.69	11.84	64.56	0.09	20.76	3.80	3.41	88	364	135	338.3	74.9
A320	45	4.20	752	159.0	2.14	50	244	51.63	1.83	13.33	75.32	0.15	19.98	2.47	2.39	77	411	424	446.5	64.3
A324	47	4.12	1155	85.2	10.80	14	221	21.11	0.64	5.59	38.89	0.05	18.40	1.91	2.53	204	218	55	229.3	62.8
A327	100	4.07	935	116.9	23.78	56	288	25.00	1.73	12.37	49.94	0.04	16.77	1.33	3.01	167	304	162	296.1	60.5
A410	18	4.38	776	207.9	3.91	54	217	61.09	1.23	10.07	109.88	0.11	22.26	1.97	3.56	167	524	741	582.4	64.3
A413	15	4.30	784	143.7	2.73	41	208	45.14	0.32	6.25	84.20	0.01	18.77	1.18	3.81	107	393	205	427.4	66.4
A418	22	4.28	1062	97.4	2.68	57	334	51.17	0.55	10.68	80.25	0.16	16.78	1.63	3.25	63	468	392	388.0	74.8
A420	18	4.44	776	151.9	3.11	38	190	52.67	1.18	5.97	89.56	0.10	19.73	1.26	3.22	107	451	282	462.2	67.1
A428	5	4.29	1141	96.6	3.73	29	199	33.51	0.31	6.71	58.42	0.01	14.03	0.83	2.75	67	291	75	301.2	67.9
A513	13	4.18	1338	87.4	3.57	16	191	49.83	0.32	4.59	71.41	0.03	16.77	0.98	3.45	168	408	43	351.3	75.1
A517	6	4.33	1008	122.1	2.78	36	266	41.03	0.17	8.55	77.38	0.06	17.33	1.34	3.29	96	365	186	384.9	68.2
A521	15	4.40	1222	124.8	2.61	33	310	44.55	0.17	10.87	78.94	0.11	18.52	1.59	3.08	103	380	321	401.4	68.8
۹524	10	4.45	786	197.2	4.33	34	2	50.15	0.32	8.17	100.51	0.01	20.68	0.10	3.21	170	419	114	527.4	62.6
4527	14	4.27	1155	117.6	3.65	36	325	50.78	0.30	10.13	89.37	0.11	18.91	1.50	3.22	79	447	358	427.1	72.4
\611	9	4.20	1723	60.6	3.32	13	216	32.10	0.11	5.05	49.96	0.03	15.40	1.37	2.24	42	229	52	245.3	75.3
\616	32	4.36	829	130.3	2.74	38	320	43.08	0.69	15.65	78.83	0.11	21.84	2.24	3.98	93	402	382	411.9	68.3
\619	27	4.24	1484	66.7	3.10	25	268	39.31	0.16	6.67	63.29	0.04	18.10	1.14	2.56	50	344	114	296.7	77.5
\624	14	4.12	1593	57.3	2.19	20	241	36.87	0.22	5.35	56.52	0.06	15.77	1.30	2.88	74	313	130	265.3	78.4
\628	3	4.30	1395	61.7	2.40	19	201	36.35	0.16	5.70	56.63	0.04	15.08	0.67	2.38	38	291	74	268.5	77.0
4713	13	4.37	1236	127.2	4.56	35	275	49.77	0.94	8.42	76.87	0.12	18.91	1.03	3.51	84	396	300	408.1	68.8
716	14	4.16	1349	82.2	3.24	25	252	45.04	0.33	6.01	64.57	0.08	15.19	1.45	3.05	68	338	140	322.8	74.
4720	16	4.32	1065	118.5	3.28	31	226	44.72	0.70	10.54	66.41	0.16	16.07	1.15	3.54	96	351	346	367.6	67.7
1723	8	4.33	1117	129.6	3.10	30	272	39.26	0.73	9.57	66.97	0.13	18.07	1.47	3.34	99	305	197	369.9	64.9
727	12	4.37	1180	126.0	2.53	42	362	49.13	0.30	10.38	79.74	0.27	18.19	2.52	3.56	85	403	419	412.8	69.4
810	16	5.46	1536	6.4	0.55	32	275	245.13	0.15	10.85	34.48	0.28	12.55	0.10	5.33	762	489	57	589.5	98.8
813	13	5.86	1603	0.0	0.52	29	239	303.96	0.12	9.18	32.62	0.43	10.48	0.10	4.05	1056	533	5	693.7	99.9
816	23	5.47	1339	5.7	0.52	51	219	265.48	0.46	11.66	43.35	0.43	11.73	0.10	4.47	1080	585	76	647.6	99.0
824	15	5.82	1698	0.0	0.48	37	245	267.56	0.13	8.93	26.43	0.40	10.06	0.35	3.83	1713	516	17	607.8	99.9
829	28	5.01	1215	24.9	0.96	57	236	229.60	1.02	12.17	55.57	0.68	13.04	0.10	5.14	464	589	146	621.8	95.8
3112	60	4.21	672	90.3	23.05	16	171	13.86	3.37	4.96	19.12	0.07	9.40	0.10	2.19	225	119	185	170.7	47.
3116	100	4.15	348	91.0	4.84	49	206	34.65	1.10	5.31	47.57	0.11	13.25	0.64	1.52	51	250	201	274.2	66.
3120	30	4,17	581	104.8	15.85	55	223	29.93	0.78	5.65	44.09	0.12	14.09	1.03	2.30	118	248	146	272.8	61.
3126	100	4,20	365	71.5	10.38	54	215	28.95	2.29	6.13	37.67	0.15	9.91	0.10	1.56	190	237	191	221.1	67.
3129	100	4 22	282	90.6	5.97	68	122	37.60	0.63	3.19	45.76	0.51	16.36	0.10	1.06	54	288	198	277.9	67.
3211	60	3.98	1051	86.9	3.98	22	173	30.91	0.74	4.29	55.31	0.04	17.86	1.58	1.77	116	324	106	281.5	69.
2217	100	4 15	851	102.0	7 38	44	491	33 37	0.61	28.67	51.96	0.39	14.92	3.41	2.79	129	312	487	317.0	67
3221	85	4 23	584	282.5	2 62	50	430	54 79	2.15	18.92	68.41	0.32	21.44	4.94	3.26	190	284	720	570.0	50
2220	100	3 06	904	121 5	21 50	29	274	24.32	1 04	7 84	44 71	0.19	14 93	1.58	2.97	162	215	118	282.7	56
220	100	J.90	1907	55.0	3 09	23	314	40 10	0.12	7 59	46.70	0.04	15.30	1 70	2.64	137	342	75	251.8	78
2214	CI 44	4.33	1645	00.3 66 0	J.30	20	350	45.52	0.13	8.50	60.03	0.10	17 04	2 00	3 18	233	360	181	303.9	77
040	14	4.31	1015	00.9	4.40	33	352	40.02	0.20	7.05	62.03	0.10	16.00	1.64	3.10	200	360	174	347.0	74
B319	9	4.31	1445	81.1	4.36	36	265	42.69	0.25	7.95	63.31	0.08	16.00	1.64	3.25	304	368	171	317.2	

Vedlegg 5 forts.

Wat Tat)				Da	U .	Ca	re	к 	wig	MIN	Na	г 		31		211	CEC	Baser BS
323 5	4.52	1835	83.0	6.17	42	240	38.74	0.65	4.15	62.54	0.01	14.69	0.81	5.66	81	340	84	304.5	72.
328 1	4.38	1691	55.2	3.96	29	174	32.44	0.44	3.36	52.60	0.01	13.02	0.44	4.50	102	299	63	241.7	77.
i411 ε	4.39	1350	93.7	4.24	12	199	38.34	0.33	6.07	62.06	0.01	15.57	1.25	3.35	111	290	48	316.1	70.
414 2	4.31	1212	85.7	2.08	28	320	34.07	0.23	9.42	62.48	0.01	15.19	0.77	5.50	106	303	69	303.4	71.
418 5	4.30	1583	59.0	2.37	8	149	32.00	0.30	3.12	47.11	0.01	13.40	0.48	3.22	169	216	5	233.7	74.
423 11	4.37	1402	97.5	3.86	15	238	32.98	0.39	6.64	60.03	0.06	14.76	0.88	3.12	72	261	133	305.0	68.
427 28	4.29	873	141.2	2.78	33	294	53.20	0.67	10.76	98.44	0.14	19.99	1.84	3.47	107	460	444	475.6	70.
510 13	4.12	1151	89.6	1.26	23	328	53.19	0.26	9.48	84.88	0.09	18.41	2.25	5.05	77	482	220	393.8	77.
513 14	4.34	878	139.7	1.74	29	247	60.39	0.59	9.48	109.00	0.06	21.53	1.79	4.18	99	542	201	509.7	72.
516 12	4.34	945	76.4	2.24	15	197	50.81	0.65	5.66	76.03	0.04	15.32	0.59	3.54	200	395	91	351.1	78.
526 E	4.39	1222	81.2	2.30	15	175	50.41	0.66	4.43	75.97	0.03	15.41	0.10	3.65	244	395	90	353.9	77.
529 9	4,27	1248	95.6	2.65	20	341	51.77	0.15	13.97	87.89	0.04	17.61	1.54	2.32	57	454	172	406.6	76.
611 25	4.33	1052	126.1	1.30	15	219	49.51	0.75	8.22	88.60	0.08	19.67	2.51	2.96	83	478	89	430.4	70.
614 25	4.34	968	106.2	1.20	27	198	45.74	0.39	9.85	71.43	0.07	15.55	2.65	2.29	76	439	188	366.0	71
619 70	4.50	570	384.5	1.95	29	2	33.05	0.01	15.25	65.57	0.19	21.33	4.22	2.91	287	170	409	618.8	37
622 29	4.29	860	131.0	1.25	18	205	50.69	0.46	11.75	87.64	0.07	20.69	4.21	2.97	99	471	234	440.2	70
627 65	4.60	351	472.3	2.36	34	2	26.90	0.25	10.98	56.71	0.01	29.17	0.10	3.02	335	172	178	679.6	30
110 75	4.41	555	258.5	1.92	32	2	43.22	0.31	18.06	73.14	0.01	20.91	1.90	2.90	180	331	405	530.2	51
114 35	4.26	888	139.3	1.73	28	265	58.90	0.62	13.58	87.92	0.12	21.54	2.57	4.83	78	471	333	468.3	70.
118 16	4.22	1034	114.7	2.68	17	233	44.57	0.60	8.29	76.64	0.08	17.30	1.44	3.53	58	401	187	382.9	70
121 40	4.52	415	287.8	2.12	22	2	47.11	0.52	12.77	79.13	0.34	21.27	0.10	2.42	219	247	268	575.0	49
128 30	4.54	537	255.6	2.01	25	2	63.04	0.94	9.40	94.19	0.01	23.19	0.10	4.29	219	407	318	602.7	57
214 16	4.19	1368	60.7	1.86	20	313	49.41	0.28	9.74	67.08	0.09	15.47	2.06	2.70	263	372	294	319.0	80
219 16	4.23	1665	49.1	1.92	21	359	44.83	0.10	7.49	57.44	0.07	15.43	1.33	2.52	136	326	90	276.7	82
221 16	4.14	1476	56.9	1.86	20	318	36.75	0.09	9.26	63.93	0.07	16.33	2.04	2.14	78	340	133	284.0	79.
224 11	4.27	1433	70.7	1.79	19	351	39.20	0.08	9.66	66.04	0.09	15.89	1.62	2.48	77	317	139	306.9	76.
227 12	4.28	1371	62.7	2.62	23	266	48.12	0.20	8.94	69.74	0.07	16.40	1.11	2.06	108	392	93	323.9	80.
110 55	4.23	937	97.4	2.11	30	172	44.84	0.36	6.63	58.22	0.09	15.05	1.95	2.31	62	348	125	325.4	70.
118 60	4.46	543	196.0	2.17	39	2	68.12	0.39	9.97	94.38	0.07	20.02	1.49	1.80	132	452	372	551.2	64.
120 65	4.11	1176	75.1	2.33	29	222	51.34	0.26	5.34	68.26	0.07	18.03	2.38	2.66	49	392	147	337.8	77.
123 57	4.17	951	82.6	2.46	31	171	44.96	0.70	3.43	60.10	0.05	15.42	0.74	1.85	46	364	79	311.6	73.
126 52	4.34	757	151.8	2.41	44	270	46.06	0.70	13.41	73.96	0.20	20.15	1.87	2.85	99	358	295	425.8	64.
210 10	4.23	1157	86.9	2.08	21	364	62.69	0.21	11.89	58.93	0.08	14.19	1.92	3.00	63	338	124	356.4	75.
219 20	4.25	1095	129.3	3.60	30	283	65.31	0.39	8.58	75.95	0.10	16.69	1.66	3.60	91	414	129	437.3	70.
221 12	4.28	1493	58.5	2.61	16	333	62.46	0.24	10.58	53.64	0.03	13.10	1.61	2.12	62	339	41	314.5	81
226 22	4.24	1334	62.1	2.22	34	280	65.98	0.51	8.62	66.58	0.12	14.87	0.96	2.07	61	433	188	351.0	82.
311 16	4.29	1542	50.1	1.12	21	308	/9.29	0.15	/.81	51.59	0.12	13.31	1.85	3.81	78	349	99	333.2	84
319 10	4.34	1424	48.1	1.51	20	273	112.47	0.39	8.33	49.33	0.09	11.51	0.77	3.34	40	3/9	87	391.7	87
321 12	4.46	1206	87.5	2.06	25	287	87.12	0.28	10.74	59.04	0.14	12.98	1.40	3.07	/3	365	222	403.9	78.
325 14	4.10	1275	52.5	1.61	20	254	83.46	0.26	6.90	58.09	0.22	12.49	1.32	4.51	42	3/3	12/	355.5	85.
328 13	4.35	1365	62.2	1.71	30	282	106.33	0.22	4.85	58.86	0.10	12.55	0.75	3.41	49	407	91	410.2	84
112 54	4.29	916	100.8	1.64	34	240	88.17	0.37	10.23	90.51	0.04	18.40	1.67	1.72	52	623	148	486.8	/9
116 40	4.18	842	89.6	1.89	32	293	74.01	0.30	12.00	/4.70	0.10	22.91	1.52	1.78	40	483	229	422.2	/8
119 15	4.14	1199	43.5	1.42	22	214	78.59	0.16	6.50	51.58	0.10	13.81	2.58	2.16	56	356	81	324.3	86
120 12	4.18	1271	48.2	2.02	19	230	77.91	0.31	5.81	53.42	0.04	13.76	1.84	2.19	48	3/0	51	330.5	85

-

_

	Ledn Cond	pН	N	AI	Ca	Cu	Fe	К	Mg	Na	S	Si
A	46.70	4.65	0.54	0.07	0.38	0.024	0.31	0.15	0.69	6.20	0.57	0.07
в	42.40	4.76	0.55	0.05	0.27	0.024	0.03	0.15	0.57	5.73	0.43	0.06
С	38.70	5.37	0.30	0.01	0.33	0.010	0.04	0.19	0.64	5.43	0.59	0.03
D	45.10	6.20	0.52	0.11	1.05	0.010	0.31	0.15	0.85	6.93	0.57	0.07
A116	86.50	4.21	6.45									
A122	97.60	4.16	48.60									
A129	88.90	4.18	22.00									
A211	101.40	4.19	14.65									
A214	98.60	4.16	14.40									
A219	77.30	4.32	2.59									
A224	63.20	4.42	2.08									
A229	67.40	4.43	3.74									
A320	76.50	4.28	11.10							. 1		
A324	80.00	4.52	13.15									
A410	58.40	4.48	3.60									
A413	50.70	4.58	1.35									
A418	52.60	4.56	2.52									
A420	53.20	4.59	1.71									
A428	54.80	4.59	3.60									
A513	51.10	4.54	0.91									
A517	49.60	4.58	1.14									
A521	50.70	4.57	1.99									
A524	50.20	4.57	0.80									
A527	51.40	4.55	1.50									
A611	50.80	4.60	0.73									
A616	60.80	4.41	3.52									
A619	54.10	4.57	1.82									
A624	55.40	4.57	1.82									
A628	56.70	4.56	1.46									
A713	52.50	4.53	1.58									
A716	51.20	4.58	1.25									
A720	53.30	4.60	1.94									
A723	52.70	4.54	1.87									
A727	53.50	4.54	1.95									
A810	172.00	6.41	2.66									
A813	98.30	6.29	1.40									
A816	150.70	6.31	2.68									
A824	279.00	6.50	1.83									
A829	133.10	6.06	3.44									
D110	04 70	5 O1	14 20									
DIIZ	01.70	5.01	14.20									

© Norsk institutt for naturforskning (NINA) 2010 http://www.nina.no Vennligst kontakt NINA, NO-7485 TRONDHEIM for reproduksjon av tabeller, figurer, illustrasjoner i denne rapporten.

Vedlegg 6 forts.

	Ledn Cond	рH	N	AI	Ca	Cu	Fe	к	Mg	Na	S	Si
B314	55.40	4.66	2.56									
B319	51.00	4.70	1.95									
B323	50.30	4.66	0.93									
B328	49.60	4.67	0.96									
B411	52.50	4.60	2.72									
B414	59.30	4.55	2.24									
B418	54.10	4.59	2.54									
B423	53.50	4.56	2.08									
B427	56.00	4.71	5.04									
B510	52.90	4.56	3.16									
B513	54.40	4.53	1.94									
B516	53.50	4.58	3.22									
B526	52.00	4.65	2.64									
B529	55.90	4.57	1.92									
B611	66.70	4.51	5.25									
B614	68.20	4.61	9.90									
B622	69.20	4.49	7.75									
C110	78.50	4 24	9.45									
C114	72.80	4 35	4 81									
C119	. 63.30	4.55	3.85									
C121	° 03.30 80.10	4.44 A 27	3.03 11 35									
C128	66 70	4.21	11.55									
C120	52 70	4.40	4.52									
C214	53.70	4.02	1.00									
C213	63 50	4.54	0.07									
C221	56 60	4 60	1.06									
C224	78 70	4.00	2 74									
0221	70.70	4.47	2.14									
D118	85.20	4.35	19.66									
D120	79.80	4.41	17.74									
D210	57.90	4.57	1.90									
D214	58.50	4.53	2.40									
D219	60.10	4.46	2.04									
D221	62.50	4.57	2.12									
D226	71.30	4.54	1.39									
D311	66.60	4.72	2.27									
D319	66.10	4.73	2.79									
D321	56.30	4.58	1.24									
D325	61.00	4.71	3.40									
D328	53.50	4.64	1.88									
E112	84.40	4.46	2.24									
E116	84.50	4.40	2.42									
E119	79.00	4.42	2.12									
E120	78.70	4.43	2.22									
E107	85.70	4.37	2.30									

© Norsk institutt for naturforskning (NINA) 2010 http://www.nina.no Vennligst kontakt NINA, NO-7485 TRONDHEIM for reproduksjon av tabeller, figurer, illustrasjoner i denne rapporten.

Kjemisk innhold i fire moser: Racomitrium lanuginosum (RACO LAN), S. austinii (SPH AUST), Sphagnum papillosum (SPH PAPI) og S. cuspidatum (SPH CUSP) fra transektene A-E med analysefelt-nummer. Enheter vist i vedlegg 4. - Chemical content in four mosses: Racomitrium lanuginosum (RACO LAN), S. austinii (SPH AUST), Sphagnum papillosum (SPH PAPI) and S. cuspidatum (SPH CUSP) from transects A-E with site numbers. Units shown in appendix 4.

	AI	Ba	Са	Cu	Fe	к	Mg	Mn	Ν	Na	Ρ	Pb	S	Sr	Zn
RACO LAN															
A1	7,20	31	24,5	63	4,22	17,5	42,8	0,12	241	13,28	3,2	34	12,68	154	184
A2	3,77	16	25,2	55	2,27	22,0	44,0	0,41	239	14,57	5,5	27	11,45	130	192
A3	4,58	12	17,4	57	2,63	20,9	38,4	0,08	230	13,69	4,9	27	10,77	127	124
B1a	5,24	17	22,4	67	3,16	21,6	46,3	0,88	223	15,31	4,2	27	10,98	160	136
B1b	7,56	14	15,2	60	4,45	13,2	31,0	0,05	238	10,93	2,4	27	10,92	117	108
B2	3,71	19	19,3	45	2,21	23,2	39,3	0,15	223	12,85	5,1	27	10,85	118	148
C1	2,43	12	16,6	46	1,52	20,1	41,2	0,13	179	18,43	3,5	27	9,44	114	142
D1	5,40	56	28,7	42	3,19	21,5	38,1	0,16	232	10,24	4,5	27	11,72	152	111
D3	4,78	12	1/,/	50	2,68	21,6	37,3	0,07	224	13,15	4,7	27	11,32	111	145
Ela	6,17	10	19,3	64 50	3,67	20,1	41,5	0,08	248	14,29	3,4	27	12,02	138	130
	5,18	15	21,2	50	3,08	17,3	40,7	0,07	235	13,37	2,8	27	10,43	131	135
3PH AU31	2 02	24	40.4	20	4 0 4	00 F	<u> </u>	0.07	200	50.07	7 0	07	00.00	454	405
A7a A7b	3,03	34	43,4	30 26	1,04	02,3 70.4	0,00	0,07	200	50,97	1,0	21	20,00	154	405
A70 A80	2.64	20	22 1	30	1,93	100.8	79,3	1,44	262	57 01	0,0 7 0	27	25,95	174	201
A0a 48h	2,04	12	12 8	30	1,72	100,0	69 A	4 20	361	51 57	7,9 8.8	27	20,00	137	430 672
R2	2,00	27	31.3	35	1,50	83.8	61.0	1 43	353	51 59	8.2	27	25,04	125	846
B6	3 24	31	31.5	31	2 18	86.3	92.0	0.12	273	56 78	67	27	27 20	213	193
C2	2 48	15	45 1	38	1.54	91.0	78.3	3 20	315	52 52	74	27	24 51	159	271
D1	3.52	28	26.5	37	2.00	77.6	67.1	0.42	299	63.17	6.9	27	23.18	160	395
D2	2,85	27	42,5	38	1,68	100,2	81,1	1,37	372	46,19	10,0	27	28,84	185	268
SPH PAPI	·		ŗ			·							,		
A1	3,84	61	53,0	27	5,05	87,9	97,3	0,18	311	52,59	8,3	27	24,12	308	442
A2	5,96	64	55,2	35	9,56	70,9	115,9	0,23	337	43,34	5,7	33	24,45	366	375
A3	7,02	54	52,8	31	13,52	74,4	120,0	0,10	354	36,68	6,1	57	25,72	419	262
A4	6,02	48	53,7	30	12,23	78,8	123,1	0,15	315	40,91	6,5	60	24,08	407	435
A5	3,30	56	49,6	34	4,75	70,9	98,4	0,10	331	46,79	5,4	27	23,98	309	258
A6	4,49	61	51,7	28	7,10	57,7	110,6	0,08	328	37,01	5,6	27	27,41	375	509
B4	3,69	47	43,7	35	4,82	65,1	106,1	0,09	325	39,98	5,5	27	24,61	324	352
B5	3,73	49	43,3	33	4,45	59,7	109,1	0,11	346	45,15	4,5	27	26,21	329	365
C2	3,91	4/	40,2	43	4,88	75,9	107,9	0,08	404	57,33	5,8	27	29,02	307	275
D2	4,12	41	41,7	67	3,33	62,2	95,8	0,25	3/4	58,41	0,0	27	28,76	200	4/3
D3	2,79	31	47,2	39	2,34	79,0	91,1	0,55	359	52,82	0,0	21	24,95	232	302
SPH CUSP															
A4	3,81	110	52,8	34	7,04	151,7	115,3	0,08	487	36,99	8,6	53	27,71	464	974
A5	2,49	114	45,1	39	4,33	109,0	102,9	0,05	423	34,82	7,5	41	33,29	723	640
A6	2,20	125	38,7	36	3,53	101,4	98,3	0,04	357	32,63	7,3	34	26,45	565	8/2
B3a	5,85	104	41,5	45	6,92	114,7	111,9	0,07	465	44,88	8,1	53	27,10	454	047
B3b	3,19	109	43,7	33	3,87	116,8	125,4	0,05	3/1	41,58	7,9	20	23,20	404	941 270
B4	2,23	92	34,8	31	4,16	115,0	95,8	0,06	420	31,91	0,3 7 7	4/	20,74	200	2/0 500
85	1,94	86	35,5	32	3,05	1244	102,1	0,05	431	30,30	د, <i>ا</i> م م	30	23,22	620	560
86	2,11	/4 50	32,9 21 0	34 25	3,71	154,1	90,0 104 F	0,07	374	44,00	9,0 2 /	20	24,70	020 328	222
	1,34	50	51,0	35	1,70	104,2	124,0	0,04		55,21			21,01		

Bilder fra transekter og analyseruter.

Bilde 1. Transekt A sett nedenfra. Takrørbestand i forgrunnen. - Transect A seen from below. Stand of *Phragmites australis* in the front.

Bilde 2. Transekt B sett fra startpunkt. Håvikfjellet og Kvamslifjellet i bakgrunnen. - Transect B seen from start point. The Håvik mountain and the Kvamsli mountain in the background.

Bilde 3. Område for transekt C, utsikt mot sør-vest. - Area of transect C, view to south-west.

Bilde 4. Område for transekt D og E. Kvamslifjellet i bakgrunnen. - Area of transect D and E. The Kvamsli mountain in the background.

Bilde 5. Heigråmosetue, analyserute B 129. - Racomitrium lanuginosum hummock, sample plot B 129.

Bilde 6. Torvmosetue, analyserute B 221. - Sphagnum hummock, sample plot B 129.

Bilde 7. Fastmatte, analyserute D 126. - Lawn, sample plot D 126.

Bilde 8. Mykmatte, analyserute B 414. - Carpet, sample plot B 414.

Terrenget der de fem transektene er lagt ut. 1. Transekt A sett nedenfra, i forgrunnen takrørbestand. 2. Transekt B. Øverste analysefelt er dominert av gråmosetuer. Fire stenger står i hjørnene av hvert felt på 2,5 x 5 m, og det er tre analyseruter på den ene og to på den andre langsida, hver rute er merka med pinne i indre venstre hjørne. 3. Området for transekt C. 4. Området for transekt D og E. - The scenery where the five analysed transects are located.

Analyseruter fra de fire klassifiserte vegetasjonstypene (se avsnitt 5.1 og tabell 1) og de dominerende artene med prosentdekning. 5. *Heigråmosetuer*, rute B 129 (heigråmose 55 %, lys reinlav 30 %, mjølbær 15 %, røsslyng 10 %). 6. *Torvmosetuer*, rute B 221 (furutorvmose 70 %, røsslyng 12 %, krekling 12 %, duskull 2 %). 7. *Fastmatter*, rute D 126 (rusttorvmose 60 %, røsslyng 5 %, duskull 4 %, klokkelyng 1 %). 8. *Mykmatter*, rute B 414 (vasstorvmose 45 %, stivtorvmose 45 %, torvull 1 %, bjønnskjegg 1 %). - Sample plots of the five classified vegetation types (see Section 5.1 and Table 1) and their dominant species with % cover.

ISSN 0802-4103 ISBN 82-426-0706-0

423

NINA OPPDRAGS-MELDING

NINA Hovedkontor Tungasletta 2 7005 TRONDHEIM Telefon: 73 58 05 00 Telefax: 73 91 54 33

NINA Norsk institutt for naturforskning