Carbon turnover and sequestration

Photo: Magni Olsen Kyrkjeeide / NINA

Carbon in Norwegian ecosystems  

Understanding, protecting and restoring natural carbon within ecosystems is a key nature based solution in the fight against climate change. NINA researchers are studying carbon turnover and sequestration in Norwegian ecosystems and how management practices affect the carbon balance of such ecosystems. 

Physical disturbance on terrestrial ecosystems cause significant losses of carbon from soil to the atmosphere, as well as negative impacts on habitat and species diversity. Despite of their importance, large parts of Norway's land areas are not included in current national carbon accounting. Non-managed and seemingly unproductive ecosystems, such as alpine habitats and peatlands, have a significant ability to sequester and store carbon. 

Restoring ecosystems such as peatlands, wetlands, and old forests can achieve multiple benefits in the form of increased carbon sequestration, reduced emissions and positive effects on biodiversity and ecosystem services. Through our research and collaborations with stakeholders and landowners, research and industry partners, we aim to help to gain a better understanding of such systems, and show their value in mitigating the effects of climate change.

At NINA, we do research on how applied nature-based solutions and "natural climate measures", such as nature conservation and restoration, can mitigate losses to both carbon and biodiversity. 

We are involved in developing better management practices for increasing carbon sequestration and reducing emissions from ecosystems. We are also working with companies and land-owners in considerations for carbon-loss during infrastructure development in order to reduce the carbon footprint of infrastructure development. Solutions like these align with proposals for measures in the most recent IPCC and IPBES reports. 

Photo: Magni Olsen Kyrkjeeide / NINA

Contact

Jenni Nordén
Senior Research Scientist

Magni Olsen Kyrkjeeide
Researcher

Graciela Rusch
Senior Research Scientist

Hanno Sandvik
Researcher

Jesamine Bartlett
Researcher

Hanna M. Silvennoinen
Researcher

Marion Kruse

Researcher

Yennie Bredin

Researcher

Zander Venter

Researcher

Vegar Bakkestuen

Senior Research Scientist

Reports

Publications

Austrheim, G., Speed, J.D.M., Evju, M., Hester, A., Holand, O., Loe, L.E., Martinsen, V., Mobaek, R., Mulder, J., Steen, H., Thompson, D.B.A. & Mysterud, A. 2016. Synergies and trade-offs between ecosystem services in an alpine ecosystem grazed by sheep - An experimental approach. Basic and Applied Ecology 17(7): 596-608. https://doi.org/10.1016/j.baae.2016.06.003 

Bandara, K., Varpe, O., Wijewardene, L., Tverberg, V. & Eiane, K. 2021. Two hundred years of zooplankton vertical migration research. Biological Reviews 96(4): 1547-1589. https://doi.org/10.1111/brv.12715

Berglihn, E.C. & Gomez-Baggethun, E. 2021. Ecosystem services from urban forests: The case of Oslomarka, Norway. Ecosystem Services 51: 11. https://doi.org/10.1016/j.ecoser.2021.101358

Bjerke, J.W., Strann, K.-B., Skei, J.K. & Ødegaard, F. 2010. Myr-kilde-flommark. I: Nybø, S. (red.) Naturindeks for Norge 2010. Direktoratet for naturforvaltning, Trondheim. S. 94-108.

Bjerke, J.W., Wierzbinski, G., Tommervik, H., Phoenix, G.K. & Bokhorst, S. 2018. Stress-induced secondary leaves of a boreal deciduous shrub (Vaccinium myrtillus) overwinter then regain activity the following growing season. Nordic Journal of Botany 36(10): 8. https://doi.org/10.1111/njb.01894

de Wit, H.A., Bryn, A., Hofgaard, A., Karstensen, J., Kvalevag, M.M. & Peters, G.P. 2014. Climate warming feedback from mountain birch forest expansion: reduced albedo dominates carbon uptake. Global Change Biology 20(7): 2344-2355. https://doi.org/10.1111/gcb.12483

Framstad, E., Stokland, J.N. & Hylen, G. 2011. Skogvern som klimatiltak. Verdifulle skogtyper for biologisk mangfold og karbonlagring. NINA Rapport 752. Norsk institutt for naturforskning (NINA).

Hagen, D., Svavarsdottir, K., Nilsson, C., Tolvanen, A.K., Raulund-Rasmussen, K., Aradottir, A.L., Fosaa, A.M. & Halldorsson, G. 2013. Ecological and Social Dimensions of Ecosystem Restoration in the Nordic Countries. Ecology and Society 18(4): 14. http://dx.doi.org/10.5751/ES-05891-180434

Hoosbeek, M.R., Remme, R.P. & Rusch, G.M. 2018. Trees enhance soil carbon sequestration and nutrient cycling in a silvopastoral system in south-western Nicaragua. Agroforestry Systems 92(2): 263-273. https://doi.org/10.1007/s10457-016-0049-2

Magnussen, K., Bjerke, J.W., Brattland, C., Nybø, S. & Vermaat, J. 2018. Verdien av økosystemtjenester fra våtmark. Menon-publikasjon 42/2018.

Ols, C., Trouet, V., Girardin, M.P., Hofgaard, A., Bergeron, Y. & Drobyshev, I. 2018. Post-1980 shifts in the sensitivity of boreal tree growth to North Atlantic Ocean dynamics and seasonal climate. Global and Planetary Change 165: 1-12. https://doi.org/10.1016/j.gloplacha.2018.03.006

Ols, C., Kalas, I.H., Drobyshev, I., Soderstrom, L. & Hofgaard, A. 2019. Spatiotemporal variation in the relationship between boreal forest productivity proxies and climate data. Dendrochronologia 58: 9. https://doi.org/10.1016/j.dendro.2019.125648

Parmentier, F.J.W., Rasse, D.P., Lund, M., Bjerke, J.W., Drake, B.G., Weldon, S., Tommervik, H. & Hansen, G.H. 2018. Vulnerability and resilience of the carbon exchange o a subarctic peatland to an extreme winter event. Environmental Research Letters 13(6): 11. https://doi.org/10.1088/1748-9326/aabff3

Rees, W.G., Hofgaard, A., Boudreau, S., Cairns, D.M., Harper, K., Mamet, S., Mathisen, I., Swirad, Z. & Tutubalina, O. 2020. Is subarctic forest advance able to keep pace with climate change? Global Change Biology 26(7): 3965-3977. https://doi.org/10.1111/gcb.15113

Rusch, G. 2012. Climate and ecosystem services. The potential of Norwegian ecosystems for climate mitigation and adaptation. NINA Report 791. Norsk institutt for naturforskning. http://hdl.handle.net/11250/2397583

Sanden, H., Mayer, M., Stark, S., Sanden, T., Nilsson, L.O., Jepsen, J.U., Wali, P.R. & Rewald, B. 2020. Moth Outbreaks Reduce Decomposition in Subarctic Forest Soils. Ecosystems 23(1): 151-163. https://doi.org/10.1007/s10021-019-00394-6

Schroter, M., Barton, D.N., Remme, R.P. & Hein, L. 2014. Accounting for capacity and flow of ecosystem services: A conceptual model and a case study for Telemark, Norway. Ecological Indicators 36: 539-551. https://doi.org/10.1016/j.ecolind.2013.09.018

Schrotter, M., Kraemer, R., CeauAyu, S. & Rusch, G.M. 2017. Incorporating threat in hotspots and coldspots of biodiversity and ecosystem services. Ambio 46(7): 756-768. https://doi.org/https://dx.doi.org/10.1007%2Fs13280-017-0922-x

Schröter, M., Rusch, G.M., Barton, D.N., Blumentrath, S. & Nordén, B. 2014. Ecoystem services and opportunity costs shift spatial priorities for conserving forest biodiversity. PLoS One  9(11). https://doi.org/10.1371/journal.pone.0112557

Skarpaas, O., Meineri, E., Bargmann, T., Potsch, C., Topper, J. & Vandvik, V. 2016. Biomass partitioning in grassland plants along independent gradients in temperature and precipitation. Perspectives in Plant Ecology Evolution and Systematics 19: 1-11. https://doi.org/10.1016/j.ppees.2016.01.006

Smith, A.C., Harrison, P.A., Soba, M.P., Archaux, F., Blicharska, M., Egoh, B.N., Eros, T., Domenech, N.F., Gyorgy, A.I., Haines-Young, R., Li, S., Lommelen, E., Meiresonne, L., Ayala, L.M., Mononen, L., Simpson, G., Stange, E., Turkelboom, F., Uiterwijk, M., Veerkamp, C.J. & de Echeverria, V.W. 2017. How natural capital delivers ecosystem services: A typology derived from a systematic review. Ecosystem Services 26: 111-126. https://doi.org/10.1016/j.ecoser.2017.06.006

Sorensen, M.V., Graae, B.J., Hagen, D., Enquist, B.J., Nystuen, K.O. & Strimbeck, R. 2018. Experimental herbivore exclusion, shrub introduction, and carbon sequestration in alpine plant communities. Bmc Ecology 18: 12. https://doi.org/10.1186/s12898-018-0185-9

Saarikoski, H., Jax, K., Harrison, P.A., Primmer, E., Barton, D.N., Mononen, L., Vihervaara, P. & Furman, E. 2015. Exploring operational ecosystem service definitions: The case of boreal forests. Ecosystem Services 14: 144-157. https://doi.org/10.1016/j.ecoser.2015.03.006

Stange, E. & Rusch, G.M. 2021. Mapping and Assessment of Ecosystem Services in Norway: Examples as support for implementation of ecosystem accounting. NINA Report 2012. https://hdl.handle.net/11250/2759709

Tommervik, H., Johansen, B., Riseth, J.A., Karlsen, S.R., Solberg, B. & Hogda, K.A. 2009. Above ground biomass changes in the mountain birch forests and mountain heaths of Finnmarksvidda, northern Norway, in the period 1957-2006. Forest Ecology and Management 257(1): 244-257. https://doi.org/10.1016/j.foreco.2008.08.038

Venter, Z., Hawkins, H.-J., Cramer, M.D. & Mills, A.J. 2021.Mapping soil organic carbon stocks and trends with satellite-driven high resolution maps over South Africa. Science of The Total Environment. 771. https://doi.org/10.1016/j.scitotenv.2021.145384

Projects

Footprint and Impacts of Renewable Energy: Pressure on Lands Under Growth (FIREPLUG): Jesamine Bartlett, Dagmar Hagen, Brett Sandercock. 

New framework for greener encroachment on nature and reduction of greenhouse gas emissions in construction work (GRAN): Magni Kyrkjeeide, Jesamine Bartlett, Dagmar Hagen. 

Peatland rewetting in Nitrogen contaminated environments: Synergies and trade-offs between biodiversity, climate, water quality and society (PRINCESS):  Hanna Silvenoinnen

Forecasting hydrological responses, carbon balance and emissions from different types of mires in arctic to temperate transect under abrupt climatic change (FORCE): Hanna Silvenoinnen

Functional responses of forest soil biota to climate change and biochar: ecosystem carbon budget, soil condition and management implications (ForBioFunCtioN): Jenni Nordén